Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 2 + 3 +...+ 50
Dãy số trên là dãy số cách đều với khoảng cách là:
2 - 1 = 1
Số số hạng của dãy số trên là:
(50 - 1): 1 + 1 = 50
Tổng A là:
A = (50 + 1)x 50 : 2 = 1275
Muốn tính tổng của một dãy số cách đều em cần có kiến thức sau:
1, Tìm khoảng cách của dãy số cách đều bằng cách lấy số hạng sau trừ số hạng liền kề trước nó
2, Tìm số số hạng bằng cách lấy số cuối trừ số đầu được bao nhiêu chia cho khoảng cách rồi cộng 1
3, Tổng dãy số cách đều bằng (số cuối + số đầu) nhân số số hạng rồi chia 2
Cách học tốt toán theo ý mình là:
-Bạn nên lấy một tấm bài cứng ghi công thức hay lý thuyết gì đó lên,cứ mỗi ngày bạn đọc vài lần,dần dần sẽ thuộc.
-Bạn nên chú ý nghe thầy giảng bài thật kĩ.Đừng lơ là.
yêu thì tấn công nhanh trc khi ng` khác cướp mất cô ấy của anh bạn
đúng òi bị cướp là chết đóa ,ko cướp dc nhanh là mất đấy ko đùa đâu
số đó là : 189
vì 189 : 18 = 10 ( dư 9 )
vì 189 : 15 = 12 ( dư 9 )
ok nha bạn
chúc bạn học tốt ạ
– Gọi x là số bông hồng cô H có.
– Nếu cô bó thành các bó bông gồm 3 bông, 5 bông hay 7 bông thì số bông hồng cô H có là bội chung của 3, 5 và 7.
– Theo đề bài ta có: x \(\in\) BC(3, 5, 7) và 200 ≤ x ≤ 300
Vì 3, 5, 7 đều là số nguyên tố
=> BCNN (3, 5, 7) = 105
=> BC (3, 5, 7) = B (105) = {0; 105; 210; 315;…}
=> x \(\in\) BC(3, 5, 7) ={ 0; 105; 210; 315;…}
Mà 200 \(\le\) x \(\le\) 300
\(\Rightarrow\) x = 210.
Vậy số bông hồng mà cô H bó là 210 bông
Không những thế, http://olm.vn/hoi-dap/question/1234.html bạn trần cao anh triết, huỳnh nghuyên phúc, huỳnh nguyên phát copy bài của [gv] nhưng lại có hàng chục ng cho đúng. Là sao>
Giáo viên được olm chọn,nhưng các bạn khác copy câu trả lời,lập nhiều nick rồi nhấp đúng cho các bạn ấy
Trong olm xảy ra nhiều chuyện kiểu đấy rồi bạn ạ!
\(C=\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)...\left(1-\dfrac{1}{780}\right)\)
\(=\dfrac{2}{3}.\dfrac{5}{6}.\dfrac{9}{10}...\dfrac{779}{780}=\dfrac{2.2}{3.2}.\dfrac{5.2}{6.2}.\dfrac{9.2}{10.2}...\dfrac{779.2}{780.2}\)
\(=\dfrac{4}{6}.\dfrac{10}{12}.\dfrac{18}{20}...\dfrac{1558}{1560}=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\dfrac{38.41}{39.40}\)
\(=\dfrac{1.2.3...38}{2.3.4...39}.\dfrac{4.5.6...41}{3.4.5...40}=\dfrac{1}{39}.\dfrac{41}{3}=\dfrac{41}{117}\)
\(C=\left(1-\dfrac{2}{6}\right)\left(1-\dfrac{2}{12}\right)\left(1-\dfrac{2}{20}\right)...\left(1-\dfrac{2}{1560}\right)\)
\(=\left(1-\dfrac{2}{2.3}\right)\left(1-\dfrac{2}{3.4}\right)\left(1-\dfrac{2}{4.5}\right)...\left(1-\dfrac{2}{39.40}\right)\)
Ta có: \(1-\dfrac{2}{n\left(n+1\right)}=\dfrac{n\left(n+1\right)-2}{n\left(n+1\right)}=\dfrac{n^2+n-2}{n\left(n+1\right)}=\dfrac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Do đó:
\(C=\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}.\dfrac{3.6}{4.5}...\dfrac{38.41}{39.40}\)
\(=\dfrac{1.2.3...38}{2.3.4...39}.\dfrac{4.5.6...41}{3.4.5...40}=\dfrac{1}{39}.\dfrac{41}{3}=\dfrac{41}{117}\)
thay ma