Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi h là khoảng cách hai đường thẳng d và d’, gọi α là góc tạo bởi hai đường thẳng d và d’.
Lần lượt vẽ hai hình bình hành BACF và ACDE.
Khi đó, ABE.CFD là hình lăng trụ tam tam giác có chiều cao h; AE = CD = b và
Gọi S là diện tích đáy của hình lăng trụ .
Ta chia hình lăng trụ ABE. CFD thành ba hình chóp tam giác là: D. ABE, B. CFD, D.ABC. Ta có:
Do đó, thể tích khối tứ diện ABCD không đổi.
Gọi h là độ dài đường vuông góc chung của d và d’, α là góc giữa hai đường thẳng d và d’. Qua B, A, C dựng hình bình hành BACF. Qua A,C, D dựng hình bình hành ACDE.
Khi đó CFD.ABE là một hình lăng trụ tam giác. Ta có:
VDABC=VDFCB=VBCDF
= VCFD.ABE
= hSFCD= h. ab. sinα
=h. ab. sinα (là một số không đổi).
Xem thêm tại: http://loigiaihay.com/cau-6-trang-26-sgk-hinh-hoc-12-c47a2782.html#ixzz4cxsiVwHA
Đáp án D
Hướng dẫn giải: Ta có
Gọi (P) là mặt phẳng chứa C'F và song song với EG, do đó:
Lại có (P):
Ta có mặt phẳng (AA’I) là mặt phẳng qua trục hình trụ. Mặt phẳng này cắt hình trụ theo thiết diện là hình chữ nhật IKK’I’. Đoạn A’I cắt KK’ tại M nên cắt hình trụ theo đoạn IM.
Ta có:
Xét tam giác vuông IKM ta có:
IM 2 = IK 2 + KM 2
Vậy
Chọn đáp án B.
ta có hệ điều kiện:
Vậy A - 1 ; - 1 , B 1 ; 3
→ A B = 2 2 + 4 2 = 2 5
Ko đủ đk để tính