K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2023

\(AH^2=BH.CH=18.32=576\Rightarrow AH=24\left(cm\right)\)

\(AB^2=AH^2+BH^2=576+324=900\) (Δ ABH vuông tại H)

\(\Rightarrow AB=30\left(cm\right)\)

\(AC^2=AH^2+CH^2=576+1024=1600\) (Δ ACH vuông tại H)

\(\Rightarrow AC=40\left(cm\right)\)

Xét tam giác AHB vuông tại H có:

AH2+HB2=AB2(định lý pythagore) (1)

Xét tam giác AHC vuông tại H có:

HA2+HC2=AC2 (định lý pythagore) (2) 

Từ (1) và (2) ta cộng lại vế theo vế, có:

2AH2+BH2+CH2=AB2+AC2

<=>2AH2+BH2+CH2=BC2

<=> 2AH2+182+322=(18+32)2

<=>2AH2+1348=2500

<=>2AH2=2500-1348

<=>2AH2=1152

<=>AH2=1152:2

<=>AH2=576

<=>AH=\(\sqrt{576}\)

<=>AH=24(cm)

-Ta thay AH=24cm vào (1) ta có:

HB2+AH2=AB2

<=>182+242=AB2

<=>900=AB2

<=>\(AB=\sqrt{900}=30\)(cm)

-Ta thay AH=24cm vào (2) ta có:

HC2+HA2=AC2

<=>322+242=AC2

<=>1600=AC2

\(\Leftrightarrow AC=\sqrt{1600}=40\left(cm\right)\)

Vậy AB=30cm; AC=40cm

12 tháng 12 2016

a, Xét \(\Delta ABH\)và\(\Delta APE\)

Ta có: góc BHA = góc PEA (=90')

            AH = AE ( cạnh của hình vuông AHKE)

           góc BAH = góc PAE ( cùng bằng 90' trừ đi góc HAP)

  Do đó \(\Delta ABH=\Delta APE\)(cạnh huyền - góc nhọn)

Suy ra: AB = AP

Suy ra: \(\Delta APB\)cân tại A.

12 tháng 12 2016

cảm ơn bạn nhiều nhé. nếu bạn biết làm 2 câu cuối thì có thể chỉ mình luôn đk ko ạ? mình cần gấp lắm

29 tháng 6 2018

Gọi H là giao DB và EF

Có BF=BC=AD và BE=AB

 Ta có: ˆEBF+ˆABC=180∘EBF^+ABC^=180∘

            ˆBAD+ˆABC=180∘BAD^+ABC^=180∘

         ⇒ˆEBF=ˆBAD⇒EBF^=BAD^

 ΔBAD=ΔEBF(c.g.c)ΔBAD=ΔEBF(c.g.c)

  ⇒ˆBEF=ˆABD⇒ˆBEF+ˆEBH=ˆABD+ˆEBH⇒ˆBEF+ˆEBH=90∘⇒ˆEHB=90∘⇒BEF^=ABD^⇒BEF^+EBH^=ABD^+EBH^⇒BEF^+EBH^=90∘⇒EHB^=90∘

 Suy ra DB⊥EF

Dấu ^ sửa lại thành kí hiệu góc nha :3

a. Ta có: ˆBAH=ˆBAC+ˆCAH=ˆBAC+900

ˆEAC=ˆBAC+ˆBAE=ˆBAC+900

Suy ra: ˆBAH=ˆEAC

– Xét ∆ BAH và ∆ EAC:

BA = EA (vì ABDE là hình vuông)

ˆBAH=ˆEAC (chứng minh trên)

AH = AC (vì ACFH là hình vuông)

Do đó: ∆ BAH = ∆ EAC (c.g.c)

⇒ BH = EC

Gọi giao điểm của EC với AB và BH lần lượt là K và O.

ˆAEC=ˆABH (vì ∆ BAH = ∆ EAC) (1)

hay ˆAEK=ˆOBK

– Trong ∆ AEK ta có: ˆEAK=900

⇒ˆAEK+ˆAKE=900

9 tháng 2 2020

Um... phần a và b mình làm rồi nhưng còn phần c chưa giải được ._.