\(1101_2◻\)thành hệ thập phân

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2021

Ta có:\(1101_2\)=1.2^3+1.2^2+0.2+1=8+4+0+1=13

Vậy 1101\(_2\)=13

Chúc bạn học tốt

Số hệ 10 của \(1101_2\) là: 

\(1\cdot2^3+1\cdot2^2+0\cdot2+1=8+4+0+1=13\)

30 tháng 1 2019

a,\(x^2+2xy+7x+7y+y^2+10=\left(x^2+2xy+y^2\right)+7\left(x+y\right)+10\)

\(=\left(x+y\right)^2+2\left(x+y\right)+5\left(x+y\right)+10\)

\(=\left(x+y\right)\left(x+y+2\right)+5\left(x+y+2\right)\)

\(=\left(x+y+2\right)\left(x+y+5\right)\)

b,\(x^2y+xy^2+x+y=2010\Rightarrow xy\left(x+y\right)+x+y=2010\)

\(\Rightarrow12\left(x+y\right)=2010\Rightarrow x+y=167,5\)

Ta có:\(x^2+y^2=x^2+2xy+y^2-2xy=\left(x+y\right)^2-2xy=\left(167,5\right)^2-2.11=28034,25\)

13 tháng 11 2019

Biến đổi tớ gọi B nhá cậu :)
\(B=\frac{\frac{3}{x}}{5-\frac{3}{2x}}=\frac{4x+3}{x}:\frac{10x-3}{2x}=\frac{4x+3}{x}.\frac{2x}{10x-3}=\frac{8x+6}{10x-3}\)

Bài này đơn giản làm theo dạng là được =))

21 tháng 4 2017

a)+1+1x=xx+1x=x+1x1+1x=xx+1x=x+1x

Áp dụng câu a) ta có :

1+11+1x=1+1x+1x=1+xx+1=x+1+x1+x=2x+1x+11+11+1x=1+1x+1x=1+xx+1=x+1+x1+x=2x+1x+1

Dùng kết quả câu b) ta có :

1+11+11+1x=1+12x+1x+1=1+x+12x+1=2x+1+x+12x+1=3x+22x+11+11+11+1x=1+12x+1x+1=1+x+12x+1=2x+1+x+12x+1=3x+22x+1

b)Đối với các biểu thức có dạng đã cho có thể dự đoán như sau :

Qua các kết quả của các bài ở câu a ta thấy kết quả tiếp theo sau là một phân thức mà tử bằng tổng của tử và mẫu, còn mẫu là tử của kết quả vế trước đó.

Như vậy có thể dự đoán rằng nếu biểu thức có 4 gạch phân số thì kết quả là 5x+33x+25x+33x+2, và trong trường hợp này có 5 gạch phân số, kết quả sẽ là 8x+55x+38x+55x+3 .

Thật vậy : 1+11+11+11+11+1x=1+13x+22x+1=1+2x+13x+2=3x+2+2x+13x+2=5x+33x+21+11+11+11+11+1x=1+13x+22x+1=1+2x+13x+2=3x+2+2x+13x+2=5x+33x+2

Do đó 1+11+11+11+11+1x=1+15x+33x+21+11+11+11+11+1x=1+15x+33x+2


22 tháng 8 2019

\(\frac{x+\frac{1}{y}}{y+\frac{1}{x}}=\frac{\frac{xy}{y}}{\frac{xy}{x}}=\frac{xy}{y}.\frac{x}{xy}=\frac{x}{y}\)

22 tháng 8 2019

\(\frac{x+\frac{1}{y}}{y+\frac{1}{x}}=\left(x+\frac{1}{y}\right):\left(y+\frac{1}{x}\right)=\frac{xy+1}{y}:\frac{xy+1}{x}=\frac{\left(xy+1\right)\cdot x}{\left(xy+1\right)\cdot y}=\frac{x}{y}\).

3 tháng 9 2016

Đặt \(P\left(x\right)=2x^4+3x^3-9x^2-3x+2\)

Giả sử nhân tử của P(x) có dạng : \(P\left(x\right)=2\left(x^2+ax+b\right)\left(x^2+cx+d\right)=\left(x^2+ax+b\right)\left(2x^2+2cx+2d\right)\)

Khai triển : \(P\left(x\right)=2x^4+2cx^3+2dx^2+2ax^3+2acx^2+2adx+2bx^2+2bcx+2bd\)

\(=2x^4+x^3\left(2c+2a\right)+x^2\left(2d+2ac+2b\right)+x\left(2ad+2cb\right)+2bd\)

Dùng phương pháp hệ số bất định :

\(\Rightarrow\begin{cases}2a+2c=3\\2ac+2b+2d=-9\\2ad+2bc=-3\\bd=1\end{cases}\) . Giải ra được \(\begin{cases}a=-1\\b=-1\\c=\frac{5}{2}\\d=-1\end{cases}\)

Vậy \(P\left(x\right)=2\left(x^2-x-1\right)\left(x^2+\frac{5}{2}x-1\right)=\left(x^2-x-1\right)\left(2x^2+5x-2\right)\)