Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};\frac{1}{4^2}< \frac{1}{3\cdot4};....;\frac{1}{100^2}< \frac{1}{99\cdot100}\)
\(\Rightarrow A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}< 1\left(đpcm\right)\)
Ta có : \(\frac{1}{2^2}=\frac{1}{4}< \frac{1}{1.2}\)
\(\frac{1}{3^2}=\frac{1}{9}< \frac{1}{2.3}\)
\(\frac{1}{4^2}=\frac{1}{16}< \frac{1}{3.4}\)
....
\(\frac{1}{100^2}=\frac{1}{10000}< \frac{1}{99.100}\)
Suy ra : \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy ta có đpcm
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}< 2\left(đpcm\right)\)
Ta có:
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{2014^2}\)
\(< \frac{1}{4}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+.....+\frac{1}{2013\cdot2014}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{2013}-\frac{1}{2014}\)
\(=\frac{1}{4}+\frac{1}{2}-\frac{1}{2014}\)
\(=\frac{3}{4}-\frac{1}{2014}\)
\(< \frac{3}{4}\)
Ta có: \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\)
\(=\frac{1}{2^2}+\left(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\right)\)
Nhận xét: \(\frac{1}{2^2}=\frac{1}{4}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(\frac{1}{4^2}< \frac{1}{3\cdot4}\)
\(\frac{1}{5^2}< \frac{1}{4\cdot5}\)
...
\(\frac{1}{2014^2}< \frac{1}{2013\cdot2014}\)
Do đó: \(\frac{1}{2^2}+\left(\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\right)< \frac{1}{4}+\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2013\cdot2014}\right)\)
\(\Leftrightarrow A< \frac{1}{4}+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)
\(\Leftrightarrow A< \frac{1}{4}+\frac{1}{2}-\frac{1}{2014}\)
\(\Leftrightarrow A< \frac{3019}{4028}\)
mà \(\frac{3019}{4028}< \frac{3021}{4028}=\frac{3}{4}\)
nên \(A< \frac{3}{4}\)(đpcm)
mk cho tổng quát bn dựa vào mà lm nghen:
1/b bình < 1/b-1 - 1/b