K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2019

\(ab+ba=(10a+b)+(10b+a)\)

\(=10a+b+10b+a\)

\(=11a+11b\)

\(=11\left(a+b\right)\)

\(a+b\inℕ\Rightarrow ab+ba⋮11\)

15 tháng 7 2019

\(A=2+2^2+2^3+\cdot\cdot\cdot+2^{2008}\)

\(\Rightarrow2A=2^2+2^3+2^4+\cdot\cdot\cdot+2^{2009}\)
\(\Rightarrow2A-A=\left(2^2+\cdot\cdot\cdot2^{2009}\right)-\left(2+\cdot\cdot\cdot+2^{2008}\right)\)

\(\Rightarrow A=2^{2009}-2\)

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

23 tháng 12

HHehe

DD
9 tháng 11 2021

\(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=3\left(2+2^3+...+2^{59}\right)\)chia hết cho \(3\).

\(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)

\(=15\left(2+...+2^{57}\right)⋮5\)

\(A=2+2^2+2^3+...+2^{60}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{58}\right)\)chia hết cho \(7\).

Bài 1: 

a) Ta có: \(\left(2x-1\right)^{20}=\left(2x-1\right)^{18}\)

\(\Leftrightarrow\left(2x-1\right)^{20}-\left(2x-1\right)^{18}=0\)

\(\Leftrightarrow\left(2x-1\right)^{18}\left[\left(2x-1\right)^2-1\right]=0\)

\(\Leftrightarrow\left(2x-1\right)^{18}\cdot\left(2x-2\right)\cdot2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)

b) Ta có: \(\left(2x-3\right)^2=9\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=3\\2x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)

c) Ta có: \(\left(x-5\right)^2=\left(1-3x\right)^2\)

\(\Leftrightarrow\left(x-5\right)^2-\left(3x-1\right)^2=0\)

\(\Leftrightarrow\left(x-5-3x+1\right)\left(x-5+3x-1\right)=0\)

\(\Leftrightarrow\left(-2x-4\right)\left(4x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)

Bài 2: 

a) \(15^{20}-15^{19}=15^{19}\left(15-1\right)=15^{19}\cdot14⋮14\)

b) \(3^{20}+3^{21}+3^{22}=3^{20}\left(1+3+3^2\right)=3^{20}\cdot13⋮13\)

c) \(3+3^2+3^3+...+3^{2007}\)

\(=3\left(1+3+3^2\right)+...+3^{2005}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{2005}\right)⋮13\)

24 tháng 10 2018

Đề phòng giáo dục đấy năm 2018

16 tháng 10 2016

a ) 49 + 105 + 399 chia hết cho 7

Vì 49 chia hết cho 7

   105 chia hết cho 7

   399 chia hết cho 7

=> 49 + 105 + 399 chia hết cho 7

b ) 84 + 48 + 120 không chia hết cho 8

Vì 84 không chia hết cho 8

    48 chia hết cho 8

  120 chia hết cho 8

=> 84 + 48 + 120 không chia hết cho 8

c ) Ta có :

ab - ba = 10a + b - 10b - a

            = 9a - 9b

            = 9 ( a - b )

Vì 9 chia hết cho 9 => 9 ( a - b ) chia hết cho 9

Vậy ab - ba chia hết cho 9

d ) Ta có :

2 5 . 15 - 2 6

= 2 5 ( 15 - 2 )

= 2 5 . 13

Vì 13 chia hết cho 13

=> 2 5 . 13 chia hết cho 13

Vậy 2 5 . 15 - 2 6 chia hết cho 13

21 tháng 10 2016

a, 49+105+399 chia hết cho 7 vì:

49 chia hết cho 7

105 chia hết cho 7

399 chia hết cho 7

=>49 + 105 + 399 chia hết cho 7.

b, 84+48+120 ko chia hết cho 8

48 chia hết cho 8

120 chia hết cho 8

Nhưng 84 ko chia hết cho 8

=> 84+48+120 chia hết cho 8

16 tháng 10 2016

a ) 49 + 105 + 399 chia hết cho 7

Vì 49 chia hết cho 7

  105 chia hết cho 7

  399 chia hết cho 7

=> 49 + 105 + 399 chia hết cho 7

b ) 84 + 48 + 120 không chia hết cho 8

Vì 84 không chia hết cho 8

    48 chia hết cho 8

   120 chia hết cho 8

=. 84 + 48 + 120 không chia hết cho 8

c ) ab - ba = 10a + b - 10b - a

                = 9a - 9b

                = 9 ( a - b )

Vì 9 chia hết cho 9

=> 9 ( a - b ) chia hết cho 9

Vậy ab - ba chia hết cho 9

d ) 2 5 . 15 - 2 6

= 2 5 ( 15 - 2 )

= 2 5 . 13

Vì 13 chia hết cho 13

=> 2 5 . 13 chia hết cho 13

Vậy 2 5 . 15 - 2 vhia hết cho 13

28 tháng 7 2017

b) \(n+7⋮n\)

Mà: \(n⋮n\)

\(\Rightarrow7⋮n\)

\(\Rightarrow n\inƯ\left(7\right)=1;7;-1;-7\)

Vậy giá trị n cần tìm là: n=1;-1;7;-7

\(n+11⋮n+9\)

\(\Rightarrow\left(n+9\right)+2⋮n+9\)

Do: \(n+9⋮n+9\)

\(\Rightarrow2⋮n+9\)

\(\Rightarrow n+9\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)

Lập bảng giá trị:

n+912-1-2
n-8-7-10-11

Vậy giá trị n cần tìm là: n=-8;-7;-10;-11

\(2n+13⋮n+3\)

\(\Rightarrow2\left(n+3\right)+7⋮n+3\)

Vì: \(2\left(n+3\right)⋮n+3\)

\(\Rightarrow7⋮n+3\)

\(\Rightarrow n+3\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)

Lập bảng giá trị:

n+317-1-7
n-24-4-10

Vậy giá trị n cần tìm là: n=-2;4;-4;-10

13 tháng 12 2015

7+ 7+ 72 + 73 + ... + 72008 + 72009

= (1 + 7) + (1 + 7) . 73 + ... + (1 + 7) . 72009

=8 + 8 . 73 + ... + 8 . 72009

= 8 . (1 + 73 + ... + 72009)

Vậy tổng trên chia hết cho 8

13 tháng 10 2016

Ta có : ( 70 + 71 + 72 + 73 + ..... + 72008 + 72009 

(=)  ( 1 + 7 + 72 + 7 + ...... + 72008 + 72009 

(=) 1 . ( 1 + 7 ) + 72 . ( 1 + 7 ) + ....... + 72008 . ( 1 + 7 )

(=) ( 1 + 7 ) . ( 1 + 72 + ..... + 72008 )

(=) 8 . ( 1 + 72 + ..... + 72008 ) chia hết cho 8 ( vì 8 chia hết cho 8 )