Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(xy+xz+yz=xyz\left(x+y+z\right)\)
\(\Leftrightarrow x+y+z=\frac{xy+xz+yz}{xyz}\left(1\right)\)
Ta lại có \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}=\frac{x^2-yz-y^2+xz}{x\left(1-yz\right)-y\left(1-xz\right)}=\frac{\left(x-y\right)\left(x+y\right)+z\left(x-y\right)}{x-y}=\frac{\left(x-y\right)\left(x+y+z\right)}{x-y}=x+y+z\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\Leftrightarrow xy+xz+yz=xyz\left(x+y+z\right)\)
Vậy ta có đpcm
\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-yz\right)}\)
\(\Rightarrow\left(x^2-yz\right)y\left(1-yz\right)=\left(y^2-xz\right)x\left(1-yz\right)\)
\(\Rightarrow x^2y-x^3yz-y^2z+xy^2z^2=xy^2-x^2z-xy^3z+x^2yz^2\)
\(\Rightarrow x^2y-x^3yz-y^2z+xy^2z^2-xy^2+x^2z+xy^3z-x^2yz^2=0\)
\(\Rightarrow xy\left(x-y\right)-xyz\left(x-y\right)\left(x+y+z\right)+z\left(x-y\right)\left(x+y\right)=0\)
\(\Rightarrow\left(x-y\right)\left[xy-xyz\left(x+y+z\right)+xz+yz\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\xy+yz+zx=0\end{cases}}\)
Mà \(x\ne y\) nên \(xy+xz+yz-xyz\left(x+y+z\right)=0\)
\(\Leftrightarrow xy+xz+yz=xyz\left(x+y+z\right)\)
Đpcm
Từ gt ta có : (x2 - yz)y(1 - yz) = (y2 - xz)x(1 - yz)
=> 0 = VT - VP = (x2y - x3yz - y2z - xy2z2) - (xy2 - xy3z - x2z - x2yz2) = xy(x - y) - xyz(x2 - y2) + z(x2 - y2) + xyz2(y - x)
= (x - y)[xy - xyz(x + y) + z(x + y) - xyz2] = (x - y)(xy + yz + xz - xyz(x + y + z)]
Vì\(x\ne y\Rightarrow x-y\ne0\) nên xy + yz + xz - xyz(x + y + z) = 0 => xy + yz + xz = xyz(x + y + z)
Bạn ko hiểu chỗ nào thì hỏi mình nhé!
x2 + y2 + z2 = xy + yz + xz
<=> 2( x2 + y2 + z2 ) = 2( xy + yz + xz )
<=> 2x2 + 2y2 + 2z2 = 2xy + 2yz + 2xz
<=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2xz = 0
<=> ( x2 - 2xy + y2 ) + ( y2 - 2yz + z2 ) + ( x2 - 2xz + z2 ) = 0
<=> ( x - y )2 + ( y - z )2 + ( x - z )2 = 0
Ta có : \(\hept{\begin{cases}\left(x-y\right)^2\\\left(y-z\right)^2\\\left(x-z\right)^2\end{cases}}\ge0\forall x,y,z\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\forall x,y,z\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}}\Rightarrow x=y=z\left(đpcm\right)\)
Ta có: \(x^2+y^2+z^2=xy+yz+zx\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}}\Rightarrow x=y=z\)
Nguyễn Minh Phương trẻ trâu quá giỏi làm đi ko làm đc thì câm ko làm đc mà oai thì ăn chửi
Giải:
\(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\)
\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2xz+z^2\right)+\left(y^2-2yz+z^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\ge0\) (luôn đúng với mọi x, y, z)
Vậy ...
Ta có \(xy+xz+yz\le\frac{\left(x+y+z\right)^2}{3}\)
\(\Rightarrow x+y+z+\frac{\left(x+y+z\right)^2}{3}\ge6\)
\(\Rightarrow\left(x+y+z\right)^2+3\left(x+y+z\right)-18\ge0\)
\(\Rightarrow\left(x+y+z+6\right)\left(x+y+z-3\right)\ge0\)
\(\Rightarrow x+y+z-3\ge0\) (do \(x+y+z+6>0\))
\(\Rightarrow x+y+z\ge3\)
\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\ge\frac{3^2}{3}=3\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\)
//Hoặc cách khác sử dụng AM-GM:
\(x^2+1\ge2x\) ; \(y^2+1\ge2y\); \(z^2+1\ge2z\);
\(x^2+y^2+z^2\ge xy+xz+yz\Rightarrow2x^2+2y^2+2z^2\ge2xy+2xz+2yz\)
Cộng vế với vế của 4 BĐT trên ta có:
\(3x^2+3y^2+3z^2+3\ge2\left(x+y+z+xy+xz+yz\right)=12\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge9\)
\(\Rightarrow x^2+y^2+z^2\ge3\)
Dấu "=" xảy ra khi \(x=y=z=1\)