
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


-tam giác cân:+2 cạnh bằng nhau, hai góc ở đáy bằng nhau
+Tam giác có đường cao kẻ từ đỉnh là phân giác(trung tuyến, trung trực)
+Tam giác có phân giác kẻ từ đỉnh là đường cao (trung trực, trung tuyến)
+Tam giác có đường trung trực kẻ từ đỉnh là phân giác (trung tuyến, đường cao)
+Tam giác có đường trung tuyến kẻ từ đỉnh là trung trực( phân giác, đường cao)
+Tam giác có một đường trung trực kẻ từ đỉnh
cm:1 tam giác là tam giác cân:
-2 cạnh bằng nhau, hai góc ở đáy bằng nhau
-Tam giác có đường cao kẻ từ đỉnh là phân giác(trung tuyến, trung trực)
-Tam giác có phân giác kẻ từ đỉnh là đường cao (trung trực, trung tuyến)
-Tam giác có đường trung trực kẻ từ đỉnh là phân giác (trung tuyến, đường cao)
- Tam giác có đường trung tuyến kẻ từ đỉnh là trung trực( phân giác, đường cao)
- Tam giác có một đường trung trực kẻ từ đỉnh
cm 1 tam giác là tam giác đều:
* tam giác đều
- chứng minh tam giác có 3 cạnh = nhau
- chứng minh tam giác có 3 góc = nhau
- chứng minh tam giác có 2 góc = 60*
- chứng minh tam giác cân có 1 góc = 60*

a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
b: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có
AH chung
\(\widehat{EAH}=\widehat{FAH}\)
Do đó: ΔAEH=ΔAFH
Suy ra: HE=HF
hayΔHEF cân tại H
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC



Hình bạn tự vẽ nhé !! Mình đang bận
a, xét tam giác ABD và tam giác EBD
có góc BAD = góc BED(=90 độ)
BD là cạnh chung
góc ABD = góc EBD (BD là phân giác)
=> 2 tam giác bằng nhau (ch-gn)
b, Vì 2 tam giác trên bằng nhau
=> AD=DE (2 cạnh tương ứng)
xét tam giác ADK và tam giác EDC
có góc KAD = góc CED (=90 độ)
AD=DE(cmt)
góc ADK = góc EDC (đối đỉnh)
=> 2 tam giác ADK và EDC bằng nhau
=> DK=DC(2 cạnh tương ứng)
c, +, xét tam giác ABC vuông tại A (gt)
=> \(BC^2=AB^2+AC^2\left(1\right)\)
Mà AB =9cm(2),AC=12 cm (gt) (3)
Từ (1)(2)=> \(BC^2=9^2+12^2=225\)
=>\(BC=15\left(cm\right)\left(4\right)\)
+, Vì 2 tam giác ADK và EDC
=> AK =EC (2 cạnh tương ứng)
Mà AB = BE (vì 2 tam giác ABD và EBD)
Từ đó => AK+AB=EC+BE
hay BK =BC (5)
Mặt khác BK=AB+AK(6)
Từ (2)(4)(5)(6)=>15=9+AK
=>AK=15-9=6(cm)
d,Gọi BD giao KC tai điểm O
Xét 2 tam giác BKO và BCO
có BK = BC (cmt)
góc KBO = góc CBO(Vì BD là tia phân giác)
BO là cạnh chung
=>2 tam giác BKO và BCO bằng nhau
=> góc BOK = góc BOC(7)
Ta lại có 2 góc trên có tổng bằng 180 độ(kb) (8)
Từ (7)(8)=> Góc BOK=90 độ
hay BO vuông góc với KC (9)
Ta có AB = BE (2 tam giác BAD và BED bằng nhau)
AD = DE (______________________________)
Từ 2 điều trên => BD là đường trung trực của AE
Hay BD vuông góc với AE(tính chất đường trung trực)
mà O \(\in\)BD => BO vuông góc với AE(10)
Từ (9)(10)=> AE // KC (Từ vuông góc đến //)
Chúc bạn hk tốt!!
a) xét ∆ABD và ∆EBD có :
Góc ABD = góc EBD ( BD là tia phân giác )
Góc BAD = góc BED ( =90° )
Chung BD
=) ∆ABD = ∆EBD ( ch-gn )
b) =) AD = DE
Xét ∆ADK và ∆EDC có :
AD = DE
Góc ADK = góc EDC
Góc KAD = góc CED
=) ∆ ADK = ∆ EDC ( g-c-g )
=) DK=DC

a/ \(\Delta ADE\)vuông và \(\Delta ADF\)vuông có:
\(\widehat{EAD}=\widehat{DAF}\)(AD là đường phân giác của \(\Delta ABC\))
Cạnh huyền AD chung
=> \(\Delta ADE\)vuông = \(\Delta ADF\)vuông (cạnh huyền - góc nhọn)
=> DE = DF (hai cạnh tương ứng) (đpcm)
b/ \(\Delta ABD\)và \(\Delta ACD\)có:
AB = AC (\(\Delta ABC\)cân tại A)
\(\widehat{EAD}=\widehat{DAF}\)(AD là đường phân giác của \(\Delta ABC\))
Cạnh AD chung
=> \(\Delta ABD\)= \(\Delta ACD\)(c. g. c)
Ta có AB = AC (\(\Delta ABC\)cân tại A)
=> A thuộc đường trung trực của BC
=> AD \(\perp\)BC (đpcm)
c/ Ta có AD là đường phân giác của \(\Delta ABC\)
=> \(\widehat{DAB}=\frac{\widehat{BAC}}{2}=\frac{80^o}{2}=40^o\)(tính chất tia phân giác)
và \(\widehat{EDA}=90^o-\widehat{DAB}\)(\(\Delta ADB\)vuông tại D)
=> \(\widehat{EDA}=90^o-40^o=50^o\)
Ta lại có: \(\widehat{DAB}< \widehat{EDA}\)(vì 40o < 50o)
=> DE < AE (quan hệ giữa góc và cạnh đối diện trong tam giác)
và \(\hept{\begin{cases}DA< AE\\DA< DE\end{cases}}\)(quan hệ giữa đường vuông góc và đường xiên)
=> DA < DE < AE (đpcm)
a)Xét tam giác EAD và FAD có
AÊD= góc AFD=90*
AD là cạnh chung
góc EAD=góc FAD(tam giác ABC cân)
=>tam giác ...=...(cạnh huyền-góc nhọn)
=>DE=DF
b)Xét tam giác ABD và ACD có
BA=CA(gt)
BÂD=CÂD(gt)
AD là cạnh chung
=>tam giác ...=...(c-g-c)
=>góc BDA=CDA
mà BDA+CDA=180*
=>BDA=CDA=180*/2=90*
=>AD vuông góc với BC
c) Xét tam giác AED có: AÊD+EÂD+ góc EDA=180*
=>90*+(80*/2)+góc EAD=180*
=>90*+40*+góc EAD=180*
=>góc EAD=180*-(90*+40*)
=>góc EAD=50*
ta có:EÂD<góc ADE<AÊD(40*<50*<90*)
=>ED<AE<AD
Vậy, ED<AE<AD.
Học = Không dốt (cái này ai cũng bít rùi) (1)
Không học = dốt ( nt ) (2)
Áp dụng pp cộng đại số ở (1)(2) ta được :
Học + Không học = Không dốt + dốt
Mà " Không" là bằng 0 nên ta có:
Học + 0 học = 0 dốt + dốt
Đặt nhân tử chung:
=> (1+0) học = (0+1) dốt
1 học = 1 dốt
Giản ước số 1 ta đc:
Học = dốt
càng hok càng ngu