Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pain Thiên Đạoko bt đừng trả lời ok mà ai chẳng bt là có pytago đảo cód đứa sống ngoài ngân hà ms ko bt
Vì BC2 = AB2 + AC2 => tam giác ABC vuông ( định lý Py - ta - go đảo )
Vậy tam giác ABC vuông
Vương Đại Nguyên đg cần chứng minh định lý pytago đảo mà bạn
. Định lí Pytago
Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng bình phương hai cạnh góc vuông.
∆ABC vuông tại A.
=> BC2=AB2+AC2
Giả sử ∆ABC có hai đường trung tuyến BM và CN gặp nhau ở G => G là trọng tâm của tam giác => GB = BM; GC = CN mà BM = CN (giả thiết) nên GB = GC => ∆GBC cân tại G => do đó ∆BCN = ∆CBM vì: BC là cạnh chung CN = BM (gt) (cmt) => => ∆ABC cân tại A
định lí đảo của định lí trên là: trong 1 tam giác cân thì 2 đường trung tuyến nối từ 2 đỉnh ở đáy bằng nhau
giả sử ta có tam giác ABC cân tại A, BD là đường trung tuyến nối từ đỉnh B tới AC( D thuộc AC); CE là đường trung tuyến nối từ đỉnh C tới AB( E thuộc AB)
suy ra B=C và
AC=AB suy ra 1/2 AB=1/2AC suy ra EA=EB=DE=DC
xét tam giác DBC và tam giác ECB có:
EB=DC(cmt)
BC(chung)
B=C(tam giác ABC cân tại A)
suy ra tam giac sDBC=ACB(c.g.c)
suy ra EC=BD
Giả sử ∆ABC có hai đường trung tuyến BM và CN gặp nhau ở G
=> G là trọng tâm của tam giác
=> GB = BM; GC = CN
mà BM = CN (giả thiết) nên GB = GC
=> ∆GBC cân tại G => ˆGCB=ˆGBCGCB^=GBC^
do đó ∆BCN = ∆CBM vì:
BC là cạnh chung
CN = BM (gt)
ˆGCB=ˆGBCGCB^=GBC^ (cmt)
=> ˆNBC=ˆMCBNBC^=MCB^ => ∆ABC cân tại A
Định lí Pytago: Trong tam giác vuông, bình phương cạnh huyền bằng tổng các bình phương hai cạnh góc vuông
Định lí Pytago đảo: Nếu một tam giác có bình phương một cạnh bằng tổng các bình phương hai cạnh còn lại thì tam giác đó vuông
tk
Nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông.
A B C H
Cho \(\Delta ABC\)có: \(AB^2+AC^2=BC^2\)đường cao \(AH\)
Chứng minh: \(\Delta ABC\)vuông tại A (tức Pytago đảo)
Bài làm
Áp dụng định lý Pytago ta có:
\(AB^2=AH^2+BH^2\)
\(AC^2=AH^2+HC^2\)
Theo giả thiết ta có: \(BC^2=AB^2+AC^2\)
\(\Rightarrow\)\(AH^2=BH.CH\) \(\Rightarrow\)\(\frac{AH}{CH}=\frac{BH}{AH}\)
Xét \(\Delta ABH\)và \(\Delta CAH\)có:
\(\frac{AH}{CH}=\frac{BH}{AH}\) (cmt)
\(\widehat{AHB}=\widehat{CHA}=90^0\)
suy ra: \(\Delta ABH~\Delta CAH\)
\(\Rightarrow\)\(\widehat{BAH}=\widehat{ACH}\)
suy ra: \(\widehat{BAC}=90^0\)
Trong 1 tam giac vuong co ti le cua 3 canh
Đầu tiên Bình phương của cạnh huyền ,bạn bình phương tỉ số đó lên (rồi đánh số 1 nhỏ)
Sau đó Tổng bình phương 2 cạnh còn lại rồi tính ra công lại bằng số bình phương của cạnh huyền(rồi đánh số 2)
Từ 1 và 2 suy ra:Tổng bình phương cạnh huyền bằng tổng bình phương 2 cạnh góc vuông
Vậy là bạn chứng minh bình thường rồi kết luận định lí của pitago đảo thành pitago.Vậy là xong rồi