Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xét các phương án:
(I) có:
(II) có:
(III) tương đương : x2+ y2 – 2x - 3y + 0,5= 0.
phương trình này có:
Vậy chỉ (I) và (III) là phương trình đường tròn.
Chọn D.
a) Đây không phải là phương trình đường tròn do có \(xy\).
b) Vì \({a^2} + {b^2} - c = {1^2} + {2^2} - 5 = 0\)nên phương trình đã cho không là phương trình tròn.
c) Vì \({a^2} + {b^2} - c = {\left( { - 3} \right)^2} + {4^2} - 1 = 24 > 0\)nên phương trình đã cho là phương trình tròn có tâm \(I\left( { - 3;4} \right)\) và bán kính \(R = \sqrt {{a^2} + {b^2} - c} = 2\sqrt 6 \).
Đường tròn (C): x 2 + y 2 + 8 x + 6 y + 5 = 0 có tâm I( - 4; -3) và bán kính R = 20
Khoảng cách I , ∆ = 3. − 4 − 4. − 3 − 10 5 = 2 < R nên đường thẳng cắt đường tròn tại hai điểm A, B cách nhau một khoảng là A B = 2 √ ( R 2 - ( d ( I , ∆ ) ) 2 ) = 8
ĐÁP ÁN D
Đáp án D
- Ta có :
(C1) tâm I1(0;2) và R1= 3; (C2) tâm I2( 3;-4) và R2= 3
- Nhận xét : không cắt C2
- Gọi d: ax+ by+ c= 0 là tiếp tuyến chung , thế thì : d(I1; d) = R1 và d (I2; d) = R2
- Trường hợp: a= 2b thay vào (1):
- Do đó ta có hai đường thẳng cần tìm :
- Trường hợp : thay vào :
-Có 2 đường thẳng : d3: 2x- 1 = 0 và d4: 6x + 8y -1= 0.
Có tất cả 4 tiếp tuyến chung.
Đường tròn (C) có tâm I( -1;3) và bán kính. R = 1 + 9 - 5 = 5
Do tiếp tuyến d song song với đường thẳng a nên d có dạng: x + 2y - m = 0
d là tiếp tuyến của (C) khi và chỉ khi:
Chọn A.
Đường tròn (C): x 2 + y 2 + 4 x − 6 y − 3 = 0 có tâm I(-2; 3) và bán kính R = 4.
Khoảng cách d I , ∆ = 3. − 2 − 4.3 − 2 5 = 4 nên đường thẳng tiếp xúc đường tròn.
ĐÁP ÁN B
Các phương trình song song với ∆: x+2y-5=0 có dạng d: x+2y+c=0
Từ đường tròn (C) ta có tâm I(-2;1) và bán kính R=3
Vì đường thẳng d là tiếp tuyến của đường tròn (C) nên ta có:
Vậy hai phương trình tiếp tuyến của đường tròn (C) là: x + 2 y + 3 5 = 0 và x + 2 y - 3 5 = 0 .
ĐÁP ÁN D
Tọa độ giao điểm của đường thẳng ∆ và đường tròn (C) nếu có là nghiệm hệ phương trình: là nghiệm của hệ phương trình
x − y + 4 = 0 ( 1 ) x 2 + y 2 + 2 x − 4 y − 8 = 0 ( 2 )
Từ (1) suy ra: y = x + 4 thay vào (2) ta được:
x 2 + ( x + 4 ) 2 + 2 x – 4 . ( x + 4 ) - 8 = 0 x 2 + x 2 + 8 x + 16 + 2 x - 4 x – 16 - 8 = 0
2x2 + 6x - 8 = 0 ⇔ x = 1 ⇒ y = 5 x = − 4 ⇒ y = 0
Vậy đường thẳng cắt đường tròn tại 2 điểm phân biệt là (1; 5) và ( -4; 0)
+ 2x2 + y2 – 8x + 2y – 1 = 0 không phải phương trình đường tròn vì hệ số của x2 khác hệ số của y2.
+ Phương trình x2 + y2 + 2x – 4y – 4 = 0 có :
a = –1; b = 2; c = –4 ⇒ a2 + b2 – c = 9 > 0
⇒ phương trình trên là phương trình đường tròn.
+ Phương trình x2 + y2 – 2x – 6y + 20 = 0 có :
a = 1; b = 3; c = 20 ⇒ a2 + b2 – c = –10 < 0
⇒ phương trình trên không là phương trình đường tròn.
+ Phương trình x2 + y2 + 6x + 2y + 10 = 0 có :
a = –3; b = –1; c = 10 ⇒ a2 + b2 – c = 0 = 0
⇒ phương trình trên không là phương trình đường tròn.