Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tương tự như trên câu b.
Xét Δ ABC. Gọi M là trung điểm của BC
N là trung điểm của AC, P là trung điểm của AB
Cắt tam giác ABC theo đường AM ta có hai phần có diện tích bằng nhau
Cắt tam giác AMC theo đường AN ta có hai phần có diện tích bằng nhau
Cắt tam giác AMB theo đường MP ta có hai phần diện tích bằng nhau, ta có diện tích bốn phần chia bằng nhau.
Kéo dài AB về phía B một đoạn BE=DC. Nối DE cắt BC tại M.
Do CD // BE nên ta có tam giác MDC = tam giác MEB (trường hợp g.c.g). Suy ra dt(ABCD)=dt(ABMD) + dt(MDC) = dt(ABMD) + dt(MEB) = dt(DAE) = 1/2 .AE . h =1/2 (AB + BE).h = \(\dfrac{AB+CD}{2}.h\)
b) Theo câu a) thì diện tích hình thang ABCD bằng diện tích tam giác DAE nên ta nối D với trung điểm N của AE thì DN sẽ chia tam giác DAE thành 2 phần bằng nhau. Khi đó diện tích tam giác DAN bằng nửa diện tích hình thang ABCD.
Qua A kẻ đường thẳng song song với DB, cắt BC ở E. Gọi M là trung điểm của EC, ta có đường thẳng DM là đường thẳng cần dựng.
Thật vậy S D C M = 1 2 S D C E = 1 2 S A B C
MB < MC => SABM < SACM => Điểm N là giao của đường thẳng d thỏa mãn đề bài với cạnh AC, nằm trong AC. Gọi I là trung điểm AC. Lúc đó SMNC = SBCI . Gọi P, Q tương ứng là hình chiều của I, N trên BC. => IP/NQ = BC/CM = CP/CQ . B, C, I, P cố định => xác định được Q từ đó tìm ra N.
????
Mình không hiểu câu trả lời của bạn Hà Chí Trung cho lắm
Ta đã biết hai tam giác có cạnh đáy bằng nhau và chung chiều cao thì có diện tích bằng nhau. Giả sử △ ABC. Gọi M là trung điểm của BC
Cắt tam giác ABC theo đường AM chia tam giác ABC ra hai phần có diện tích bằng nhau.