K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2016

Năng lượng liên kết riêng của \(_3^6Li\) là \(W_{lkr1}= \frac{(3.m_p+3.m_n-m_{Li})c^2}{6}=5,2009 MeV.\ \ (1)\)

Năng lượng liên kết riêng của \(_{18}^{40}Ar\) là \(W_{lkr2}= \frac{(18.m_p+22.m_n-m_{Ar})c^2}{40}= 8,6234MeV.\ \ (2)\)

Lấy (2) trừ đi (1) => \(\Delta W = 3,422MeV.\)

Của Ar lớn hơn của Li.

31 tháng 3 2017

B ơi mLi và mAr bằng bn thế?

\(\Delta E=1783MeV;\frac{\Delta E}{A}=7,59MeV\)

12 tháng 3 2016

\(W_{lkr}= \frac{W_{lk}}{A}\)

Năng lượng liên kết riêng của các hạt nhân lần lượt là 1,11 MeV; 0,7075 MeV; 8,7857 MeV; 7,6 MeV.

Hạt nhân kém bền vững nhất là \(_2^4He\).

22 tháng 3 2016

Năng lượng liên kết riêng của hạt nhân

\(W_{lkr}= \frac{W_{lk}}{A} = \frac{(Zm_p+(A-Z)m_n-m_{Be})c^2}{A}\)

                     \( = \frac{0,0679.931}{10}= 6,3215MeV.\)

10 tháng 4 2016

C. 6, 3215 MeV

3 tháng 5 2018

Chọn C

16 tháng 10 2017

21 tháng 10 2019

Năng lượng liên kết của hạt nhân D 1 2  

Đáp án D

13 tháng 4 2016

\(X \rightarrow Y + \alpha\)

Ban đầu X đứng yên nên ta có  \(m_{Y}K_{Y}=m_{\alpha} K_{\alpha} \)

=> \(\frac{1}{2}m_Y^2 v_Y^2 = \frac{1}{2}m_{\alpha}^2v_{\alpha}^2\)

Với \(m_Y = A_Y = A- 4; m_{\alpha} = 4.\)

=> \(v_Y = \frac{4v}{A-4}.\)

25 tháng 2 2019

Phương pháp: Sử dụng công thức tính năng lượng liên kết riêng: ε = Wlk/A

Wlk = [Z.mp + (A – Z).mn – m].c2

Cách giải:

Năng lượng liên kết của hạt nhân Be: Wlk = (4.mp + 6.mn – mBe).c2 = 63,2149 (MeV)

Năng lượng liên kết riêng: ε = Wlk/10 = 6,3215 MeV/nuclon

Đáp án D