Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(_2^4 He + _{13}^{27}Al \rightarrow _{15}^{30}P + _0^1n\)
Phản ứng thu năng lượng
\( K_{He} - (K_{P}+K_{n} )= 2,7MeV.(*)\)
Lại có \(\overrightarrow v_P = \overrightarrow v_n .(1)\)
=> \(v_P = v_n\)
=> \(\frac{K_P}{K_n} = 30 .(2)\)
Áp dụng định luật bảo toàn động lượng trước và sau phản ứng
\(\overrightarrow P_{He} = \overrightarrow P_{P} + \overrightarrow P_{n} \)
Do \(\overrightarrow P_{P} \uparrow \uparrow \overrightarrow P_{n}\)
=> \(P_{He} = P_{P} + P_{n} \)
=> \(m_{He}.v_{He} = (m_{P}+ m_n)v_P=31m_nv\) (do \(v_P = v_n = v\))
=> \(K_{He} = \frac{31^2}{4}K_n.(3)\)
Thay (2) và (3) vào (*) ta có
\(K_{He}-31K_n= 2,7.\)
=> \(K_{He} = \frac{2,7}{1-4/31} = 3,1MeV.\)
\(\alpha + _7^{14}N \rightarrow _1^1p + _8^{17}O\)
\(m_t-m_s = m_{\alpha}+m_N - (m_{O}+m_p) =- 1,3.10^{-3}u < 0\), phản ứng thu năng lượng.
\(W_{thu} = (m_s-m_t)c^2 = K_t-K_s\)
=> \(1,3.10^{-3}.931,5 = K_{He}+K_N- (K_p+K_O)\)(do Nito đứng yên nên KN = 0)
=> \(K_p +K_O = 6,48905MeV. (1)\)
Áp dụng định luật bảo toàn động lượng
P P α P p O
\(\overrightarrow P_{\alpha} =\overrightarrow P_{p} + \overrightarrow P_{O} \)
Dựa vào hình vẽ ta có (định lí Pi-ta-go)
\(P_{O}^2 = P_{\alpha}^2+P_p^2\)
=> \(2m_{O}K_{O} = 2m_{He}K_{He}+ 2m_pK_p.(2)\)
Từ (1) và (2) giải hệ phương trình ta được
\(K_p = 4,414MeV; K_O = 2,075 MeV.\)
\(_1^1p + _4^9Be \rightarrow \alpha + _3^6Li\)
Phản ứng này thu năng lượng => \(W_{thu} =(m_s-m_t)c^2 = K_t-K_s\)
=> \( K_p+ K_{Be}-K_{He}- K_{Li} = W_{thu} \) (do Be đứng yên nên KBe = 0)
=> \(K_p = W_{thu}+K_{Li}+K_{He} = 2,125+4+3,575 = 9,7MeV.\)
Áp dụng định luật bảo toàn động lượng
P P P α α p Li
\(\overrightarrow P_{p} =\overrightarrow P_{He} + \overrightarrow P_{Li} \)
Dựa vào hình vẽ ta có
Áp dụng định lí hàm cos trong tam giác
=> \(\cos {\alpha} = \frac{P_p^2+P_{He}^2-P_{Li}^2}{2P_pP_{He}} = \frac{2.1.K_p+ 2.4.K_{He}-2.6.K_{Li}}{2.2.2m_pm_{He}K_pK_{He}} = 0.\)
Với \(P^2 = 2mK, m=A.\).
=> \(\alpha = 90^0.\)
\(_1^1p + _4^9Be \rightarrow _2^4He + _3^6X\)
Áp dụng định luật bảo toàn động lượng \(\overrightarrow P_p=\overrightarrow P_{He}+ \overrightarrow P_{X} \) (do hạt Be đứng yên)
PPPHeXp
Dựa vào hình vẽ ta có \(P_{p}^2+ P_{He}^2 = P_X^2\)
=> \(2m_{p}K_{p}+2m_{He} K_{He} = 2m_{X}K_{X}. \)
=> \(K_{p}+4K_{He} = 6K_{X} => K_X = 6MeV.\)
\(m_t = m_{\alpha}+ m_{Al}= 30,97585u.\)
\(m_s = m_P+ m_n = 30,97872u.\)
\(m_t < m_s\), phản ứng là thu năng lượng.
Năng lượng thu vào là
\(E= (m_s-m_t)c^2 = 2,87.10^{-3}uc^2= 2,87.10^{-3}931 MeV/c^2.c^2 = 2,67197MeV \)
Đổi \(1 MeV = 10^6.1,6.10^{-19}J \)
=> \(2,67197 MeV= 4,275152 .10^{-13}J.\)
Tóm lại thu năng lượng \(2,67197 MeV\) hoặc thu \(4,275152 .10^{-13}J.\)
mt=ma+mAL=30,97585u
ms=mp+mn=30,97872u
mt<ms,PHẢN ỨNG LÀ THU NĂNG LƯỢNG
NĂNG LƯỢNG THU VÀO LÀ:
E=(ms-mt)c2=2,87.10-3uc2=2,87.10-3931MeV/c2.c2=2,67197 MeV
Đổi 1 MeV=106.1,6.10-19J
Suy ra:2,67197MeV=4,275152.10-3J
Đáp số:2,67197MeV hoặc 4,275152.10-13J
\(_1^1p + _3^7 Li \rightarrow _2^4He+_2^4He\)
\(W_{tỏa} = (m_t-m_s)c^2 =( m_{Li}+m_p - 2m_{He}).931=17,4097MeV.\)
Số hạt nhân \(_2^4He\) trong 1,5 g heli là \(N= nN_A= \frac{m}{A}.N_A = \frac{1,5}{4}.6,02.10^{23}= 2,2575.10^{23} \)(hạt)
Mỗi phản ứng tạo ra 2 hạt nhân \(_2^4He\) thì tỏa ra năng lượng là 17,4097 MeV
=> Để tạo ra 2,2572.1023 hạt nhân \(_2^4He\) thì tỏa ra năng lượng là
\(W = \frac{17,4097.2,2575.10^{23}}{2} = 1,965.10^{24}MeV.\)
\(Ra \rightarrow Rn+\alpha\)
Áp dụng định luật bảo toàn động lượng
\(\overrightarrow P_{Ra} =\overrightarrow P_{Rn}+ \overrightarrow P_{\alpha} \)=> \(\overrightarrow P_{Rn}+ \overrightarrow P_{\alpha} =\overrightarrow 0\) (do ban đầu Ra đứng yên)
=> \(P_{Rn}= P_{\alpha} \)
mà \(P ^2 = 2mK\)
=> \(2m_{Rn}K_{Rn}=2m_{\alpha} K_{\alpha} \)
=> \(221,970.K_{Rn}= 4,0015.K_{\alpha}.(1)\)
Áp dụng định luật bảo toàn năng lượng toàn phần
\(K_{Ra}+m_{Ra}c^2 = K_{Rn} + m_{Rn}c^2+ K_{\alpha}+m_{\alpha}c^2\)
=> \(m_{Ra}c^2-m_{Rn}c^2-m_{\alpha}c^2 = K_{Rn} + K_{\alpha}\), ( do \(K_{Ra}=0\))
=> \( K_{Rn} + K_{\alpha}=(m_{Ra}-m_{Rn}-m_{\alpha})c^2\)
\(=(225,977 - 221,970 - 4,0105) uc^2= 5,12325 MeV. (2)\)
Từ (1) và (2) ta có hệ 2 phương trình 2 ẩn \(K_{\alpha}; K_{Rn}\) .Bấm máy tính cầm tay
\(K_{\alpha} = 5,03 MeV; K_{Rn} = 0,09 MeV. \)
ban đầu bản phải viết phương trình ra mới làm được loại này :
Li73 +11p => 2. 42X (heli)
sau đó dùng ct: ΔW=(mtrước -msau).c2 => 1 hạt LI tạo RA 2 hạt heli và bao nhiêu năng lượng =>> 1,5gX là bao nhiêu hạt sau đó nhân lên.
\(^1_1p+^7_3Li\rightarrow ^4_2X + ^4_2X\)
Năng lượng toả ra của phản ứng: \(W_{toả}=(1,0087+7,0744-2.4,0015).931=74,5731MeV\)
Số hạt X là: \(N=\dfrac{1,5}{4}.6,02.10^{23}=2,2575.10^{23}\)(hạt)
Cứ 2 hạt X sinh ra thì toả năng lượng như trên, như vậy tổng năng lượng toả ra là:
\(\dfrac{2,2575.10^{23}}{2}.74,5731=8,27.10^{24}MeV\)
\(_1^1p + _4^9Be \rightarrow _2^4He + _3^6X\)
Áp dụng định luật bảo toàn động lượng \(\overrightarrow P_p+0 =\overrightarrow P_{He}+ \overrightarrow P_{X} \)(hạt nhân Be đứng yên)
Dựa vào hình vẽ ta có
P P P He X p
\(P_{p}^2+ P_{He}^2 = P_X^2\)
=> \(2m_{p}K_{p}+2m_{He} K_{He} = 2m_{X}K_{X}. \)
=> \(K_{p}+4K_{He} = 6K_{X} => K_X = 3,575MeV.\)
Áp dụng định luật bảo toàn năng lượng toàn phần (hạt nhân Be đứng yên)
\(K_{p}+m_{p}c^2+m_{Be}c^2 = K_{He} + m_{He}c^2+ K_{X}+m_{X}c^2\)
=> \((m_p-m_{He}-m_{X})c^2= K_{He}+K_X-K_p= 2,125MeV\)
Như vậy năng lượng tỏa ra của phản ứng chính bằng hiệu động năng của các hạt sau phản ứng cho động năng của các hạt trước phản ứng và bằng 2,125 MeV.
Chọn C