Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì đồ thị hàm số đi qua A(1;-1) nên ta có :
x= 1 ; y=-1 và thay vào hàm số ta có
y= (2a+3) <=> -1 = (2a + 3)*1 <=> 2a + 3 = -1 <=> 2a = - 3 - 1 <=> 2a = -4 <=> a = -2
Vậy đồ thị hàm số có dạng y = ( -4 +3)x = -1x
- Ta có phương trình hoành độ giao điểm :
-1x = 4x - 5
<=> -1x - 4x = -5
<=>-5x = -5 <=> x = 1 => y = -1x = -1 * 1 = -1
Vậy 2 đồ thị hàm số giao nhau tại B ( 1; -1)
b) Vì hoành độ bằng 1 bằng 1 nên x = 1
Ta có phương trình hoành độ giao điểm :
(2a + 3 )x = -2x +2
thay x = 1 vào phương trình ta có :
( 2a + 3)*1 = -2*1 + 2
<=> 2a + 3 = -2+ 2
<=> 2a = -2 +2 -3 <=> a = \(-\frac{3}{2}\)
B1a) m khác 5, khác -2
b) m khác 3, m < 3
B2a) vì căn 5 -2 luôn lớn hơn 0 nên hsố trên đồng biến
b) h số trên là nghịch biến vì 2x > căn 3x
c) bạn hãy đưa h số về dạng y=ax+b là y= 1/6x+1/3 mà 1/6 >0 => h số đồng biến
Để hàm số là hàm số bậc nhất thì hệ số \(a\ne0\)
a) Cm : \(\sqrt{3-m}\ne0\Rightarrow m\ne3\)
b) \(\frac{m-5}{m+2}\ne0\Rightarrow m\ne5\)
Bài 2 :
Để hàm số đồng biến thì hệ số \(a>0\)
Để hàm số nghịch biến thì hệ số \(a< 0\)
Gợi ý z tư làm nha
Bài giải:
a) a = -2.
b) Ta có 7 = a . 2 + 3. Suy ra a = 2.
Ta có :
\(y' = 5{x^4} - 6{x^2} = {x^2}\left( {5{x^2} - 6} \right) \Rightarrow y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}} {x = 0}\\ {x = \pm \sqrt {\frac{6}{5}} } \end{array}} \right.\)
Ta có : \(y'=5x^4-6x^2=x^2\left(5x^2-6\right)\)
\(\Rightarrow y'=0\Leftrightarrow\hept{\begin{cases}x=0\\x=\pm\sqrt{\frac{6}{5}}\end{cases}}\)
Bảng :
x y - -căn(6/5) 0 căn(6/5) 0 + - 0 - 0 + Vậy hàm có 2 điểm cực trị