Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số \(y=-x^2+2mx+1\) có \(a=-1< 0;-\frac{b}{2a}=m\)nên đồng biến trên \(\left(-\infty;m\right)\)
Do đó để hàm số đồng biến trên khoảng \(\left(-\infty;3\right)\)thì ta phải có \(\left(-\infty;3\right)\subset\left(-\infty;m\right)\Leftrightarrow m\ge3.\)
\(a=-1< 0\) ; \(-\frac{b}{2a}=m\Rightarrow\) hàm số đồng biến trên \(\left(-\infty;m\right)\)
Để hàm số đồng biến trên \(\left(-\infty;3\right)\)
\(\Leftrightarrow m\ge3\)
\(y=\left(m-1\right)x^2-2mx+m+2\)(1)
+) Nếu \(m-1=0\Leftrightarrow m=1\)thì :
(1) \(\Leftrightarrow y=-2x+3\)là hàm số bậc nhất có hệ số góc \(-2< 0\Rightarrow\)hàm số nghịch biến trên \(R\)
=> Hàm số nghịch biến trên \(\left(-\infty;2\right)\)
Vậy khi \(m=1\)hàm số nghịch biến trên \(\left(-\infty;2\right)\)(2)
+) Nếu \(m-1\ne0\Leftrightarrow m\ne1\)thì (1) là hàm số bậc hai
(1) nghịch biến trên \(\left(-\infty;2\right)\)thì đồ thị h/s có bề lõm hướng lên trên
\(\Rightarrow\hept{\begin{cases}a=m-1>0\\-\frac{b}{2a}\ge2\end{cases}}\Leftrightarrow\hept{\begin{cases}m>1\\\frac{2m}{2\left(m-1\right)}\ge2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m>1\\m-2\left(m-1\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>1\\m\le2\end{cases}}\)
\(\Rightarrow1< m\le2\)\(\Leftrightarrow\hept{\begin{cases}m>1\\m-2\left(m-1\right)\ge0\Leftrightarrow\hept{\begin{cases}m>1\\m\le2\end{cases}}\end{cases}}\)(3)
Từ (2) và (3) suy ra hàm số nghịch biến trên \(\left(-\infty;2\right)\)thì \(1\le m\le2\)
a: \(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{2x_1+3-2x_2-3}{x_1-x_2}=2>0\)
=>Hàm số đồng biến trên R
b: Lấy x1<2; x2<2; x1<x2
\(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{x_1^2-4x_1-x_2^2+4x_2}{x_1-x_2}=\left(x_1+x_2\right)-4\)
Vì x1<2; x2<2 thì x1+x2<4
=>A<0
=>Hàm số nghịch biến
c: \(A=\dfrac{-x_1^2+2x_1+1+x_2^2-2x_2-1}{x_1-x_2}=-\left(x_1+x_2\right)+2\)
Vì x1>1; x2>1 nên x1+x2>2
=>-(x1+x2)<-2
=>A<0
=>Hàm số nghịch biến
\(f\left(x_1\right)-f\left(x_2\right)=\dfrac{x_1^2+\left(m+1\right)x_1+3-x_2^2-\left(m+1\right)x_2-3}{x_1-x_2}\)
\(=\left(x_1+x_2\right)-\left(m+1\right)\)
Vì \(x_1;x_2>1\) nên \(x_1+x_2>2\)
Để hàm số đồng biến trên khoảng \(\left(1;+\infty\right)\) thì \(2-m-1>0\)
=>1-m>0
hay m<1