K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2017

Đáp án: A.

Hàm số y =  x 4  + ( m 2  - 4) x 2  + 5 có 3 cực trị khi y' = 0 có 3 nghiệm phân biệt, tức là

y' = 4 x 3  + 2( m 2  - 4) = 2x(2 x 2  +  m 2  - 4) = 0 có ba nghiệm phân biệt

⇔ 2 x 2  +  m 2  - 4 = 0 có hai nghiệm phân biệt khác 0.

⇔ 4 -  m 2  > 0 ⇔ -2 < m < 2.

13 tháng 5 2017

Đáp án: A.

Hàm số y = x 4  + ( m 2  - 4) x 2  + 5 có 3 cực trị khi y' = 0 có 3 nghiệm phân biệt, tức là

y' = 4 x 3  + 2( m 2  - 4) = 2x(2 x 2  + m 2  - 4) = 0 có ba nghiệm phân biệt

⇔ 2 x 2  + m 2  - 4 = 0 có hai nghiệm phân biệt khác 0.

⇔ 4 - m 2  > 0 ⇔ -2 < m < 2.

12 tháng 10 2021

??

12 tháng 10 2021

?

NV
30 tháng 6 2021

Đề đúng là \(y=mx^2+2\left(m^2-5\right)x^4+4\) chứ bạn (nghĩa là ko bị nhầm lẫn vị trí \(x^2\) và \(x^4\))

Hàm có đúng 2 điểm cực đại và 1 điểm cực tiểu khi:

\(\left\{{}\begin{matrix}2\left(m^2-5\right)< 0\\2\left(m^2-5\right).m< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m< \sqrt{5}\)

\(\Rightarrow\) có 2 giá trị nguyên của m thỏa mãn

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

6 tháng 6 2023

Ta có:

\(y'=x^2-2mx+m^2-4\)

\(y''=2x-2m,\forall x\in R\)

Để hàm số \(y=\dfrac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) đạt cực đại tại x = 3 thì:

\(\left\{{}\begin{matrix}y'\left(3\right)=0\\y''\left(3\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2-6m+5=0\\6-2m< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m=1,m=5\\m>3\end{matrix}\right.\Leftrightarrow m=5\)

=> B.

NV
2 tháng 8 2021

\(y'=4x^3+4\left(m-2\right)x=0\Rightarrow\left[{}\begin{matrix}x=0\\x^2=2-m\end{matrix}\right.\)

Hàm có 3 cực trị khi và chỉ khi \(2-m>0\Leftrightarrow m< 2\)

Khi đó gọi 3 cực trị là A, B, C ta có: \(\left\{{}\begin{matrix}A\left(0;m^2-5m+5\right)\\B\left(\sqrt{2-m};1-m\right)\\C\left(-\sqrt{2-m};1-m\right)\end{matrix}\right.\) 

 Tam giác ABC luôn cân tại A

Gọi H là trung điểm BC \(\Rightarrow H\left(0;1-m\right)\)

\(AH=\left|y_A-y_H\right|=\left|m^2-4m+4\right|=\left(m-2\right)^2\)

\(BC=2\sqrt{2-m}\)

Do ABC đều \(\Rightarrow AH=\dfrac{\sqrt{3}}{2}BC\Leftrightarrow\left(m-2\right)^2=\dfrac{\sqrt{3}}{2}\sqrt{2-m}\)

\(\Leftrightarrow\left(2-m\right)^3=\dfrac{3}{4}\Rightarrow m=2-\sqrt[3]{\dfrac{3}{4}}\)

NV
16 tháng 9 2021

Bài toán này không giải được

Do \(y'=\left(m-1\right)x^2+2\left(m^2-4\right)+m^2-9\)

Có \(\Delta'=\left(m^2-4\right)^2-\left(m-1\right)\left(m^2-9\right)\) là 1 biểu thức bậc 4 không thể xác định nghiệm