K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 3 2021

\(y'=x^2-2x+1=\left(x-1\right)^2\ge0\) ;\(\forall x\in R\)

\(\Rightarrow\) Hàm đồng biến trên R

22 tháng 5 2017

Đáp án B

3 tháng 11 2019

Quan sát bảng biến thiên ta thấy phương trình này có 2 nghiệm.

Chọn D

y'=1/3*3x^2+1/2*2x(m-1)+(2m-1)

=x^2+x(m-1)+2m-1

a: y đồng biến trên R thì y'>0 với mọi x thuộc R

Δ=(m-1)^2-4(2m-1)

=m^2-2m+1-8m+4=m^2-10m+5

Để y'>0 với mọi x thuộc R thì m^2-10m+5<0

=>5-2*căn 5<m<5+2căn 5

b: y đồng biến trên (-vô cực;-2) và (0;1) khi y'>0 với mọi x thuộc (-vô cực;-2) và (0;1)

y'=x^2+x(m-1)+2m-1

=x^2+xm-x+2m-1

=m(x+2)+x^2-x-1

y'>0 với x thuộc (-vô cực;-2)

=>m>-x^2+x+1/(x+2) với x thuộc (vô cực;-2)

g(x)=-x^2+x+1/(x+2)

g'=(-x^2+x+1)'(x+2)-(-x^2+x+1)(x+2)'/(x+2)^2

=(x+2+x^2-x-1)/(x+2)^2=(x^2+1)/(x+2)^2>0 với mọi x

=>m thuộc (-vô cực;-2)

Tương tự, ta cũng được: m thuộc (0;1)

D
datcoder
CTVVIP
15 tháng 8 2023

\(D=\left[0;\pi\right]\)

\(y'=2\cos x-2\sin2x=2\cos x-4\cos x.\sin x=2\cos x\left(1-2\sin x\right)\)

\(y'=0\Leftrightarrow\left[{}\begin{matrix}2\cos x=0\\1-2\sin x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\cos x=0\\\sin x=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}\left(tm\right)\\x=\dfrac{\pi}{6}\left(tm\right)\\x=\dfrac{5\pi}{6}\left(tm\right)\end{matrix}\right.\)

Bảng biến thiên:

=> Hàm số y động biến trên \(\left(0;\dfrac{\pi}{6}\right)\) và \(\left(\dfrac{\pi}{2};\dfrac{5\pi}{6}\right)\)

-> Chọn C

NV
18 tháng 3 2021

\(y'=-3x^2+6x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Hàm đồng biến trên \(\left(0;2\right)\)

NV
16 tháng 7 2021

d nhận \(\overrightarrow{u}=\left(-1;2;-5\right)\) là 1 vtcp

(P) nhận \(\overrightarrow{n}=\left(1;-2;5\right)\) là 1 vtpt 

Do \(\overrightarrow{u}=-\overrightarrow{n}\Rightarrow\overrightarrow{u}\) và \(\overrightarrow{n}\) cùng phương hay \(d\perp\left(P\right)\)

\(\Rightarrow\) Có vô số mặt phẳng chứa d và vuông góc (P)

NV
24 tháng 3 2021

\(f'\left(x\right)=0\) có đúng 1 nghiệm bội lẻ \(x=0\) nên hàm có 1 cực trị

14 tháng 11 2017

Đáp án A