K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1 : Tìm điều kiện để hàm số y = -x3 + 3x2 + (m - 2)x + 1 có 2 điểm cực trị đều dương A. m < 2 B. m > 2 C. -1 < m < 2 D. m < -1 Câu 2 : Tìm điều kiện m để đồ thị hàm số y = \(\frac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) có hai điểm cực trị nằm về hai phía của trục tung A. -2 < m < 2 B. \(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\) C. 0...
Đọc tiếp

Câu 1 : Tìm điều kiện để hàm số y = -x3 + 3x2 + (m - 2)x + 1 có 2 điểm cực trị đều dương

A. m < 2 B. m > 2 C. -1 < m < 2 D. m < -1

Câu 2 : Tìm điều kiện m để đồ thị hàm số y = \(\frac{1}{3}x^3-mx^2+\left(m^2-4\right)x+3\) có hai điểm cực trị nằm về hai phía của trục tung

A. -2 < m < 2 B. \(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\) C. 0 < m < 2 D. -2 < m < 0

Câu 3 : Có bao nhiêu số nguyên m sao cho hàm số y = \(\frac{1}{3}x^3-2x^2+mx\) đạt cực đại tại hai điểm \(x_1\) , \(x_2\)\(x^2_1+x^2_2< 14\) ?

A. 2 B. 1 C. Vô số D. 4

Câu 4 : Tìm điều kiện m để đồ thị hàm số \(y=mx^4+\left(m-3\right)x^2+1\) có 3 điểm cực trị

A. 0 < m < 3 B. m < 0 C. m > 3 D. \(\left[{}\begin{matrix}m< 0\\m>3\end{matrix}\right.\)

Câu 5 : Tìm m sao cho đồ thị hàm số y = \(x^4-2mx^2+3\) có 3 điểm cực trị tạo thành 1 tam giác đều

A. \(\sqrt{3}\) B. \(\sqrt[3]{3}\) C. 1 D. 2

Câu 6 : Tìm điều kiện m sao cho đồ thị hàm số y = \(x^4+2mx^2-3\) có 3 điểm cực trị tạo thành 1 tam giác có diện tích nhỏ hơn \(9\sqrt{3}\)

A. \(m>\sqrt{3}\) B. \(m< \sqrt{3}\) C. \(0< m< \sqrt{3}\) D. \(0< m< 1\)

7
AH
Akai Haruma
Giáo viên
20 tháng 9 2020

Câu 2:

$y'=-3x^2+6x+(m-2)=0$

Để hàm số có 2 điểm cực trị $x_1,x_2$ đồng nghĩa với PT $-3x^2+6x+(m-2)=0$ có 2 nghiệm phân biệt $x_1,x_2$
$\Leftrightarrow \Delta'=9+3(m-2)>0\Leftrightarrow m>-1(1)$

Hai điểm cực trị cùng dương khi:

\(\left\{\begin{matrix} x_1+x_2=2>0\\ x_1x_2=\frac{m-2}{-3}>0\end{matrix}\right.\Leftrightarrow m< 2(2)\)

Từ $(1);(2)\Rightarrow -1< m< 2$

Đáp án C.

AH
Akai Haruma
Giáo viên
20 tháng 9 2020

Câu 2:

Để đths có 2 điểm cực trị thì trước tiên:

$y'=x^2-2mx+m^2-4=0$ có 2 nghiệm phân biệt $x_1,x_2$

Điều này xảy ra khi $\Delta'=m^2-(m^2-4)>0\Leftrightarrow m\in\mathbb{R}$

Để 2 điểm cực trị của đồ thị $y$ nằm về hai phía của trục tung thì: $x_1x_2< 0$

$\Leftrightarrow m^2-4< 0$

$\Leftrightarrow -2< m< 2$

Đáp án A.

13 tháng 8 2020

câu 1 sao không ra đáp án nào vậy bạn , hình như bạn làm sai đâu đó rồi

NV
13 tháng 8 2020

Trời, đọc xong chỉ việc chọn đáp án mà ko biết chọn luôn?

Đáp án D chứ sao nữa

10 tháng 8 2018

Đáp án D

Chọn A

AH
Akai Haruma
Giáo viên
24 tháng 6 2018

Lời giải:

Ta có: \(y=\frac{x^2-m^2+2m+1}{x-m}=x+m+\frac{2m+1}{x-m}\)

\(\Rightarrow y'=1-\frac{2m+1}{(x-m)^2}\)

Để hàm số đồng biến trên khoảng xác định của nó thì \(y\geq 0, \forall x\in \text{MXĐ}\)

\(\Leftrightarrow 1-\frac{2m+1}{(x-m)^2}\geq 0\)

\(\Leftrightarrow (x-m)^2-(2m+1)\geq 0\)

\(\Leftrightarrow x^2-2mx+(m^2-2m-1)\geq 0\)

Theo định lý về dấu của tam thức bậc 2 thì điều này xảy ra khi:

\(\Delta'=m^2-(m^2-2m-1)\leq 0\)

\(\Leftrightarrow m\leq \frac{-1}{2}\)

Đáp án D

24 tháng 6 2018

có thể giải thích vì sao ra y phẩy như vậy hông ạ

Câu 1 : Gọi M , m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\frac{3sinx+2}{sinx+1}\) trên đoạn \(\left[0;\frac{\Pi}{2}\right]\) . Khi đó giá trị của \(M^2+m^2\) là A. \(\frac{31}{2}\) B. \(\frac{11}{2}\) C. \(\frac{41}{4}\) D. \(\frac{61}{4}\) Câu 2 : Gọi M , N lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số y = \(x+\sqrt{4-x^2}\) . giá trị...
Đọc tiếp

Câu 1 : Gọi M , m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\frac{3sinx+2}{sinx+1}\) trên đoạn \(\left[0;\frac{\Pi}{2}\right]\) . Khi đó giá trị của \(M^2+m^2\)

A. \(\frac{31}{2}\) B. \(\frac{11}{2}\) C. \(\frac{41}{4}\) D. \(\frac{61}{4}\)

Câu 2 : Gọi M , N lần lượt là giá trị lớn nhất , giá trị nhỏ nhất của hàm số y = \(x+\sqrt{4-x^2}\) . giá trị của biểu thức ( M + 2N ) là

A. \(2\sqrt{2}+2\) B. \(4-2\sqrt{2}\) C. \(2\sqrt{2}-4\) D. \(2\sqrt{2}-2\)

Câu 3 : Tìm tất cả các giá trị của tham số m để giá trị nhỏ nhất của hàm số y = \(-x^3-3x^2+m\) trên đoạn \(\left[-1;1\right]\) bằng 0

A. m = 0 B. m = 6 C. m = 2 D. m = 4

Câu 4 : Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = \(\frac{x+m}{x+1}\) trên \(\left[1;2\right]\) bằng 8 ( m là tham số thực ) . Khẳng định nào sau đây đúng ?

A. m > 10 B. 8 < m < 10 C. 0 < m < 4 D. 4 < m < 8

2
NV
16 tháng 10 2020

3.

\(y'=-3x^2-6x=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=0\end{matrix}\right.\)

\(y\left(-1\right)=m-2\) ; \(y\left(1\right)=m-4\)

\(\Rightarrow y_{min}=y\left(1\right)=m-4\)

\(\Rightarrow m-4=0\Rightarrow m=4\)

4.

Hàm đã cho bậc nhất trên bậc nhất nên đơn điệu trên mọi khoảng xác định

\(\Rightarrow y_{min}+y_{max}=y\left(1\right)+y\left(2\right)=\frac{m+1}{2}+\frac{m+2}{3}=8\)

\(\Rightarrow m=\frac{41}{5}\)

Đáp án B

NV
16 tháng 10 2020

1.

\(y'=\frac{1}{\left(sinx+1\right)^2}.cosx>0\Rightarrow y\) đồng biến

\(m=y_{min}=y\left(0\right)=2\)

\(M=y_{max}=y\left(1\right)=\frac{5}{2}\)

\(\Rightarrow M^2+m^2=\frac{41}{4}\)

2.

Hàm xác định trên \(\left[-2;2\right]\)

\(y'=1-\frac{x}{\sqrt{4-x^2}}=0\Leftrightarrow x=\sqrt{2}\)

\(y\left(-2\right)=-2\) ; \(y\left(\sqrt{2}\right)=2\sqrt{2}\) ; \(y\left(2\right)=2\)

\(\Rightarrow N=-2;M=2\sqrt{2}\)

\(\Rightarrow M+2N=2\sqrt{2}-4\)

AH
Akai Haruma
Giáo viên
17 tháng 12 2017

Lời giải:

\(y=\frac{mx-m+2}{x+m}\Rightarrow y'=\frac{m(x+m)-(mx-m+2)}{(x+m)^2}\)

\(\Leftrightarrow y'=\frac{m^2+m-2}{(x+m)^2}\)

Để hàm số nghịch biến trên từng khoảng xác định của nó thì:

\(y'\leq 0\Leftrightarrow m^2+m-2\leq 0\)

\(\Leftrightarrow -2\leq m\leq 1\)

Đáp án C

9.Cho hàm số \(f\left(x\right)=\frac{4m}{\pi}+sin^2x\). Tìm m để nguyên hàm F(x) của f(x) thỏa F(0)=1 và \(F\left(\frac{\pi}{4}\right)=\frac{\pi}{8}\): \(A.m=-\frac{4}{3}\) \(B.m=\frac{3}{4}\) \(C.m=\frac{4}{3}\) \(D.m=-\frac{3}{4}\) 10.Trên mặt bàn, có một cái bánh kem hình chuông úp ngược. Mỗi lát cắt của bánh song song với mặt bàn đều là hình tròn, lát cắt dọc đi qua đỉnh bánh có dạng đồ thị của một...
Đọc tiếp

9.Cho hàm số \(f\left(x\right)=\frac{4m}{\pi}+sin^2x\). Tìm m để nguyên hàm F(x) của f(x) thỏa F(0)=1 và \(F\left(\frac{\pi}{4}\right)=\frac{\pi}{8}\): \(A.m=-\frac{4}{3}\) \(B.m=\frac{3}{4}\) \(C.m=\frac{4}{3}\) \(D.m=-\frac{3}{4}\)

10.Trên mặt bàn, có một cái bánh kem hình chuông úp ngược. Mỗi lát cắt của bánh song song với mặt bàn đều là hình tròn, lát cắt dọc đi qua đỉnh bánh có dạng đồ thị của một parabol. Người ta muốn cắt ngang cái bánh để chia nó thành hai phần có thể tích bằng nhau. Biết rằng bánh cao 36cm36cm và bán kính đường tròn đáy là 6cm.6cm. Hỏi nhát cắt cần tìm có độ cao hh so với mặt bàn là bao nhiêu cm? A.\(h=9\sqrt{2}\) B.\(h=18\) C.\(h=18\left(2-\sqrt{2}\right)\) D.\(h=18-4\sqrt{2}\)

11.Tính nguyên hàm \(I=\int\frac{dx}{cosx}\) được kết quả \(I=ln\left|tan\left(\frac{x}{a}+\frac{\pi}{b^2}\right)\right|+C\) với \(a,b,c\in Z\). Giá trị của \(a^2-b\) là: A.8 B.0 C.2 D.4

3
29 tháng 3 2019

tick mk cái

AH
Akai Haruma
Giáo viên
15 tháng 10 2017

Lời giải:

Ta có: \(y=x^4-2(m+1)x^2+2m+1\)

\(\Leftrightarrow y=(x^4-1)-2(m+1)x^2+2(m+1)\)

\(y=(x^2-1)(x^2-2m-1)\)

Xét PT \(y=0\) ta thấy pt đã có nghiệm \(x=\pm 1\). Do đó để đths cắt trục hoành tại 4 điểm phân biệt thì pt \(x^2-2m-1=0\) phải có thêm 2 nghiệm khác $\pm 1$ nữa

Do đó: \(\left\{\begin{matrix} 2m+1>0\\ (\pm 1)^2-2m-1\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>\frac{-1}{2}\\ m\neq 0\end{matrix}\right.\)

Ta xét 2 TH sau:

TH1: \(2m+1>1\Rightarrow \sqrt{2m+1}>1;-\sqrt{2m+1}< -1\)

Hoành độ 4 điểm A,B,C,D theo thứ tự lần lượt là:
\(-\sqrt{2m+1};-1;1;\sqrt{2m+1}\)

Ta có: \(AB=BC\Leftrightarrow |-\sqrt{2m+1}+1|=|-1-1|=2\)

Từ đây dễ dàng tìm được \(m=4\) (thỏa mãn)

TH2: \(0\leq 2m+1< 1\Rightarrow \sqrt{2m+1}< 1;-\sqrt{2m+1}> -1\)

Hoành độ 4 điểm A,B,C,D theo thứ tự lần lượt là:

\(-1;-\sqrt{2m+1};\sqrt{2m+1};1\)

Ta có \(AB=BC\Leftrightarrow |-1+\sqrt{2m+1}=|-\sqrt{2m+1}-\sqrt{2m+1}|=2\sqrt{2m+1}\)

Từ đây ta dễ dàng tìm được \(m=\frac{-4}{9}\) (thỏa mãn)

15 tháng 10 2017

thank you