Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B
+ Với x= - 1: ta có : f’ (-1) = 0
Giá trị của hàm số y= f’(x) đổi dấu từ âm sang dương khi qua x= -1
=> Hàm số y= f(x) đạt cực tiểu tại điểm x= -1
+ Tại điểm x=0 hoặc x= 2
- Đạo hàm tại 2 điểm đó bằng 0.
- Giá trị của hàm số y= f’(x) không đổi dấu khi đi qua điểm đó. Nên x= 0; x= 2 không là điểm cực trị của hàm số
a) Tập xác định : D = R
limx→−∞f(x)=+∞limx→+∞f(x)=−∞y′=−3x2+6x+9=0⇔x=−1,x=3limx→−∞f(x)=+∞limx→+∞f(x)=−∞y′=−3x2+6x+9=0⇔x=−1,x=3
Bảng biến thiên:
Đồ thị hàm số:
b) y=f(x) = f(x) = -x3+3x2+9x+2.
f’(x) = -3x2+6x+9. Do đó:
f’(x-1)=-3(x-1)2+6(x-1)+9
= -3x2 + 12x = -3x(x-4) > 0 ⇔ 0 < x < 4
c) f’’(x) = -6x+6
f’’(x0) = -6 ⇔ -6x0 + 6 = -6 ⇔ x0 = 2
Do đó: f’(2) = 9, f(2) = 24. Phương trình tiếp tuyến của (C) tại x0 = 2 là:
y=f’(2)(x-2) + f(2) hay y = 9x+6
a) y = f(x) = x3 – 3mx2 + 3(2m-1)x + 1
Tập xác định: D = R
y’= 3x2 -6mx + 3(2m-1) = 3(x2 – 2mx + 2m – 1)
Hàm số đồng biến trên D = R ⇔ y’ ≥ 0, ∀x ∈ R
⇔ x2 – 2mx + 2m - 1≥0, ∀x ∈ R
⇔ Δ’ = m2 – 2m + 1 = (m-1)2 ≤ 0 ⇔ m =1
b) Hàm số có một cực đại và một cực tiểu
⇔ phương trình y’= 0 có hai nghiệm phân biệt
⇔ (m-1)2 > 0 ⇔ m≠1
c) f’’(x) = 6x – 6m > 6x
⇔ -6m > 0 ⇔ m < 0
Dựa vào đồ thị ta thấy phương trình chỉ có một nghiệm đơn và hai nghiệm kép nên chỉ đổi dấu khi qua nghiệm đơn này.
Do đó suy ra hàm số f(x) có đúng một cực trị.
Chọn A.
Chọn D
Phương pháp:
Từ đồ thị hàm số của f'(x) ta lập bảng biến thiên, từ đó xác định điểm cực trị của hàm số.
Hoặc ta sử dụng cách đọc đồ thị hàm số f'(x)
Số giao điểm của đồ thị hàm số f'(x) với trục hoành bằng số điểm cực trị của hàm số f'(x). (không tính các điểm tiếp xúc)
Nếu tính từ trái sang phải đồ thị hàm số f''=(x) cắt trục hoành theo chiều từ trên xuống thì đó là điểm cực đại của hàm số f(x).
Nếu tính từ trái sang phải đồ thị hàm số f'(x) cắt trục hoành theo chiều từ trên xuống thì đó là điểm cực tiểu của hàm số f(x).
Cách giải:
Từ đồ thị hàm số f'(x) ta thấy có một giao điểm với trục hoành (không tính điểm tiếp xúc) nên hàm số f(x) có một cực trị.