\(A_K\) là biến cố  : "Người thứ k bắn trúng", k = 1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

Phép thử T được xét là: "Hai xạ thủ cùng bắn vào bia".

Theo đề ra ta có = "Người thứ k không bắn trúng", k = 1, 2. Từ đó ta có:

a) A = "Không ai bắn trúng" = "Người thứ nhất không bắn trúng và người thứ hai không bắn trúng". Suy ra A = . .

Tương tự, ta có B = "Cả hai đều bắn trúng" = . .

Xét C = "Có đúng một người bắn trúng", ta có C là hợp của hai biến cố sau:

"Người thứ nhất bắn trúng và người thứ hai bắn trượt" = A1 . .

"Người thứ nhất bắn trượt và người thứ hai bắn trúng" = . A2 .

Suy ra C = A1 . . A2 .

Tương tự, ta có D = A1 ∪ A2 .

b) Gọi là biến cố: " Cả hai người đều bắn trượt". Ta có

= . = A.

Hiển nhiên B ∩ C = Φ nên suy ra B và C xung khắc với nhau.



24 tháng 8 2017

Ak là biến cố: "Người thứ k bắn trúng"

- A1 : "Người thứ nhất bắn trúng"

⇒ Giải bài 4 trang 64 sgk Đại số 11 | Để học tốt Toán 11 : “Người thứ nhất không bắn trúng”.

- A2 : "Người thứ hai bắn trúng"

⇒ Giải bài 4 trang 64 sgk Đại số 11 | Để học tốt Toán 11 : “Người thứ hai không bắn trúng”.

Giải bài 4 trang 64 sgk Đại số 11 | Để học tốt Toán 11

21 tháng 7 2019

Đáp án B.

Xác suất để xạ thủ thứ nhất bắn không trúng bia là:LkgLvNbPc417.png 

Xác suất để xạ thủ thứ hai bắn không trúng bia là:AL85psAS4oeC.png

Gọi biến cố A:SsSUvaqYZbUA.pngCó ít nhất một xạ thủ không bắn trúng biae6YYFk6uzNgP.png. Khi có biến cố A có 3 khả năng xảy ra:  

* Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia là wo5bG7PJkutn.png  

* Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia là 90Yw5FkWlPNw.png.

* Xác suất cả hai người đều bắn không trúng bia là U7sZkj7bk76Q.png.

Vậy VshlMLEbbxbO.png .

\(C=M\cup N\)

\(D=M\cap N\)

\(F=M\cap\overline{N}\)

\(G=\left(\overline{N}M\right)\cup\left(\overline{M}N\right)\)

27 tháng 11 2019

Đáp án D

Phương pháp:

A, B là các biến cố độc lập thì P(A.B) = P(A).P(B)

Chia bài toán thành các trường hợp:

- Một người bắn trúng và một người bắn không trúng,

- Cả hai người cùng bắn không trúng.

Sau đó áp dụng quy tắc cộng.

Cách giải:

Xác suất để xạ thủ thứ nhất bắn không trúng bia là:  1   -   1 2   =   1 2

Xác suất để xạ thủ thứ nhất bắn không trúng bia là:  1   -   1 3   =   2 3

Gọi biến cố A:”Có ít nhất một xạ thủ không bắn trúng bia ”.

Khi đó biến cố A có 3 khả năng xảy ra:

+) Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia:  1 2 . 2 3   =   1 3

+) Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia:  1 2 . 1 3   =   1 6

+) Xác suất cả hai người đều bắn không trúng bia:

Khi đó

5 tháng 8 2019

Gọi A là biến cố “Xạ thủ thứ i bắn trúng bia”, i=1,2

TH1. Xạ thủ thứ nhất bắn trúng, xạ thủ 2 bắn trượt thì xác suất là:

P A 1 = 1 2 . 1 − 1 3

TH2. Xạ thủ thứ nhất bắn trượt, xạ thủ thứ 2 bắn trúng thì xác suất là:

P A 2 = 1 − 1 2 . 1 3

TH3. Cả 2 xạ thủ đều bắn trượt

P A 3 = 1 − 1 2 . 1 − 1 3

Xác suất của biến cố Y là:

P Y = P A 1 + P A 2 + P A 3 = 5 6

Đáp án. D

26 tháng 11 2018

Theo bài ra biến cố Ak: “ xạ thủ thứ k bắn trúng đích ”, với k=1,2,3 thì biến cố đối

Biến cố M “ không có xạ thủ nào bắn trúng đích” , tức là cả ba xạ thủ đều bắn trượt nên :

Chọn B

13 tháng 1 2018

Gọi C là biến cố "Có ít nhất một người bắn trúng bia", khi đó biến cố đối của B là biến cố C
Do đó P ( C ) =    1 − P ( B ) =     1 − 0 , 06 =    0 , 94 .

Chọn đáp án C.

5 tháng 11 2018

Gọi A là biến cố “Xạ thủ thứ i bắn trúng bia” i = 1,2.

Khi đó, P(A1) =1/2; P(A2) = 1/3; A1 và A2 độc lập với nhau

X =A1∩ A2 nên P(X) = P(A1∩ A2) = P(A1.A2) = P(A1).P(A2) = 1/6

Chọn đáp án là B

AH
Akai Haruma
Giáo viên
12 tháng 1 2023

Lời giải:

a. Xác suất chỉ người thứ nhất bắn trúng là:

$0,1(1-0,2)(1-0,3)=0,056$ 

b. Xác suất không người nào bắn trúng: $(1-0,1)(1-0,2)(1-0,3)=0,504$

Xác suất có ít nhất 1 người bắn trúng: $1-0,504=0,496$

c. Xác suất cả 3 người bắn trúng: $0,1.0,2.0,3=0,006$

d.

Xác suất người đầu bắn trúng và người 2 trượt:

$0,1(1-0,2)=0,08$

e. 

Xác suất có đúng 1 người bắn trúng:

$0,1(1-0,2)(1-0,3)+(1-0,1).0,2.(1-0,3)+(1-0,1)(1-0,2)0,3=0,398$

f. Xác suất có ít nhất 2 người bắn trúng:

1- xác suất cả 3 cùng trượt - xác suất chỉ có 1 người bắn trúng

= $1-(1-0,1)(1-0,2)(1-0,3)-0,398=0,098$

g.

Xác suất không có quá 2 người bắn trúng 

= 1- xác suất cả 3 người trúng = $1-0,1.0,2.0,3=0,994$