Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian chảy của vòi thứ nhất để bể đầy là a giờ (a > 0)
\(\Rightarrow\)Thời gian chảy của vòi thứ 2 để bể đầy là a + 2 giờ
Đổi : 2 giờ 24 phút : = \(\frac{12}{5}\) giờ
\(\Rightarrow\)Nếu cả 2 vòi cùng chảy thì sau một giờ nước trong bể sẽ bằng : \(\frac{1}{\frac{12}{5}}=\frac{5}{12}\)(bể)
Ta có phương trình :
\(\frac{1}{a}+\frac{1}{a+2}=\frac{5}{12}\)
\(\Leftrightarrow\frac{12\left(a+2\right)+12a}{12a\left(a+2\right)}=\frac{5a\left(a+2\right)}{12a\left(a+2\right)}\)
\(\Leftrightarrow12a+24+12a=5a^2+10a\)
\(\Leftrightarrow-5a^2+14a+24=0\)
\(\Leftrightarrow-5a^2-6a+20a+24=0\)
\(\Leftrightarrow-a\left(5a+6\right)+4\left(5a+6\right)=0\)
\(\Leftrightarrow\left(5a+6\right)\left(4-a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}5a+6=0\\4-a=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=-\frac{6}{5}\left(ktm\right)\\a=4\left(tm\right)\end{cases}}\)
Vậy thời gian vòi thứ nhất chảy 1 mình để đầy bể là 4 giờ
thời gian vòi thứ 2 chảy 1 mình để đầy bể là 4 + 2 = 6 giờ.
Gọi thười gian chảy riêng để mồi vòi chảy đầy bể lần lượt là a ; b ( a ; b > 0 )
Theo bài ra ta có hpt \(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{8}\\\dfrac{18}{a}+\dfrac{3}{b}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{24}\\\dfrac{1}{b}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=24\\b=12\end{matrix}\right.\left(tm\right)\)
Giả sử khi chảy một mình thì vòi thứ nhất chảy đầy bể trong x phút, vòi thứ hai trong y phút. Điều kiện x > 0, y > 0.
Ta có 1 giờ 20 phút = 80 phút.
Trong 1 phút vòi thứ nhất chảy được \(\frac{1}{x}\) bể, vòi thứ hai chảy được \(\frac{1}{y}\) bể, cả hai vòi cùng chảy được \(\frac{1}{80}\) bể nên ta được \(\frac{1}{x}+\frac{1}{y}=\frac{1}{80}\).
Trong 10 phút vòi thứ nhất chảy được \(\frac{10}{x}\) bể, trong 12 phút vòi thứ hai chảy được \(\frac{12}{x}\) bể. Vì cả hai vòi cùng chảy được \(\frac{2}{15}\) bể. Ta được:
\(\frac{10}{x}+\frac{12}{x}=\frac{2}{15}\)
Ta có hệ phương trình: \(\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{80}\\\frac{10}{x}+\frac{12}{y}=\frac{2}{15}\end{cases}\)
Giải ra ta được x = 120, y = 240.
Vậy nếu chảy một mình, để đầy bể vòi thứ nhất chảy trong 120 phút (2 giờ), vòi thứ hai 240 phút (4 giờ).
Đổi 4 giờ 48 phút = 4,8 giờ
Gọi xx là thời gian vòi 1 chảy đầy bể,
yy là thời gian vòi 2 chảy đầy bể (điều kiện x,y>4,8x,y>4,8)
Trong 1 giờ vòi 1 chảy được số bể là: 1x1x (bể)
Trong 1 giờ vòi 2 chảy được số bể là: 1y1y (bể)
Hai vòi nước cùng chảy vào một bể sau 4 giờ 48 phút giờ sẽ đầy, nên trong 1 giờ hai vòi cùng chảy thì được 14,8=52414,8=524 bể, ta có phương trình:
1x+1y=5241x+1y=524 (1)
Vì nếu vòi 1 chảy trong 3h, vòi 2 chảy trong 4h thì được 3434 bể nên ta có phương trình:
3x+4y=343x+4y=34 (2)
Giải hệ phương trình (1) và (2)
⇒ x=12⇒ x=12 (thỏa mãn), y=8y=8 (thỏa mãn)
Vậy vòi 1 chảy đầy bể trong12h và vòi 2 chảy đầu bể trong 8h.
Gọi thời gian chảy một mình của vòi 1 là x
=>thời gian chảy một mình của vòi 2 là x+5
Theo đề, ta có: \(\dfrac{1}{x}+\dfrac{1}{x+5}=\dfrac{1}{6}\)
=>(x+5+x)/(x^2+5x)=1/6
=>x^2+5x=6(2x+5)=12x+30
=>x^2-7x-30=0
=>(x-10)(x+3)=0
=>x=10
=>V2=15km/h