Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi: \(4\frac{4}{5}h=4,8h\).
Gọi thời gian nếu chảy riêng vòi thứ hai chảy đầy bể là \(x\left(h\right),x>0\).
Thời gian nếu chảy riêng vòi thứ nhất chảy đầy bể là \(\frac{2}{3}x\left(h\right)\).
Mỗi giờ vòi thứ nhất chảy được số phần bể là: \(\frac{3}{2x}\)(bể) vòi thứ hai chảy được số phần bể là: \(\frac{1}{x}\)(bể).
Mỗi giờ cả hai vòi chảy được: \(\frac{1}{4,8}\)(bể)
Ta có phương trình:
\(\frac{3}{2x}+\frac{1}{x}=\frac{1}{4,8}\)
\(\Leftrightarrow x=12\)(thỏa mãn)
Vậy nếu chảy riêng vòi thứ hai chảy đầy bể sau \(12h\)vòi thứ nhất chảy đầy bể sau \(\frac{2}{3}.12=8h\).
Đổi 4 giờ 48 phút = 4,8 giờ
Gọi xx là thời gian vòi 1 chảy đầy bể,
yy là thời gian vòi 2 chảy đầy bể (điều kiện x,y>4,8x,y>4,8)
Trong 1 giờ vòi 1 chảy được số bể là: 1x1x (bể)
Trong 1 giờ vòi 2 chảy được số bể là: 1y1y (bể)
Hai vòi nước cùng chảy vào một bể sau 4 giờ 48 phút giờ sẽ đầy, nên trong 1 giờ hai vòi cùng chảy thì được 14,8=52414,8=524 bể, ta có phương trình:
1x+1y=5241x+1y=524 (1)
Vì nếu vòi 1 chảy trong 3h, vòi 2 chảy trong 4h thì được 3434 bể nên ta có phương trình:
3x+4y=343x+4y=34 (2)
Giải hệ phương trình (1) và (2)
⇒ x=12⇒ x=12 (thỏa mãn), y=8y=8 (thỏa mãn)
Vậy vòi 1 chảy đầy bể trong12h và vòi 2 chảy đầu bể trong 8h.