K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2020

Hình như sai đề rồi. ?????

4 tháng 2 2021

Gọi x là lượng công việc mà tổ (I) làm trong 1hy là lượng công việc mà tổ (II) làm trong 1h

Mà tổ (I) và (II) cùng làm với nhau trong 12h thì xong 11 công việc nên ta có phương trình:

12(x+y)=112(x+y)=1  (1)

Mặt khác 2 tổ cùng làm trong 4h thì tổ (I) đi làm việc khác và tổ (II) làm nốt trong 10h nữa thì xong công việc nên ta có phương trình:

4(x+y)+10y=14(x+y)+10y=1  (2)

Kết hợp phương trình (1) và phương trình (2) ta có hệ phương trình:

12(x+y)=1

4(x+y)+10y=1

 

Giải HPT ta được x=1/ 60 và y=1/15

⇒⇒  Tổ (I) làm một mình trong 60h thì xong công việc.

Tổ (II) làm một mình trong 15h thì xong công việc.

Bn tham khảo nha

Gọi a(giờ) và b(giờ) lần lượt là thời gian tổ 1 và tổ 2 hoàn thành công việc khi làm riêng(Điều kiện: a>12; b>12)

Trong 1 giờ, tổ 1 làm được: \(\dfrac{1}{a}\)(công việc)

Trong 1 giờ, tổ 2 làm được: \(\dfrac{1}{b}\)(công việc)

Trong 1 giờ, hai tổ làm được: \(\dfrac{1}{12}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{12}\)(1)

Vì khi 2 tổ cùng làm trong 4 giờ thì tổ 1 được điều đi làm việc khác và tổ 2 làm nốt trong 10 giờ thì xong công việc nên ta có phương trình:

\(\dfrac{4}{a}+\dfrac{4}{b}+\dfrac{10}{b}=1\)

\(\Leftrightarrow\dfrac{4}{a}+\dfrac{14}{b}=1\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{12}\\\dfrac{4}{a}+\dfrac{14}{b}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{a}+\dfrac{4}{b}=\dfrac{1}{3}\\\dfrac{4}{a}+\dfrac{14}{b}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-10}{b}=\dfrac{-2}{3}\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{-30}{-2}=15\\\dfrac{1}{a}+\dfrac{1}{15}=\dfrac{1}{12}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{12}-\dfrac{1}{15}=\dfrac{1}{60}\\b=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=60\\b=15\end{matrix}\right.\)(thỏa ĐK)

Vậy: Tổ 1 cần 60 giờ để hoàn thành công việc khi làm riêng

Tổ 2 cần 15 giờ để hoàn thành công việc khi làm riêng

NV
8 tháng 1 2023

Gọi thời gian làm riêng xong việc của tổ 1 là x>0 (giờ) và tổ 2 là y>0 giờ

Trong 1 giờ hai tổ lần lượt làm được \(\dfrac{1}{x}\) và \(\dfrac{1}{y}\) phần công việc

Do 2 tổ làm chung trong 8 giờ thì hoàn thành nên: \(8\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\)

Hai đội làm việc chung trong 6h và đội 1 làm việc 1 mình thêm 6h thì hoàn thành nên:

\(6\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+6.\dfrac{1}{x}=1\) \(\Leftrightarrow\dfrac{2}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)

Ta được hệ pt: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\\\dfrac{2}{x}+\dfrac{1}{y}=\dfrac{1}{6}\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{24}\\\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=24\\y=12\end{matrix}\right.\)

22 tháng 1 2020

Gọi thời gian đội 1 làm một mình là \(x\left(h\right)\left(x>0\right)\)

\(1h\) đội 1 làm được \(\frac{1}{x}\left(V\right)\)

Gọi thời gian đội 2 làm một mình là \(y\left(h\right)\left(y>0\right)\)

\(1h\) đội 2 làm được \(\frac{1}{y}\left(V\right)\)

Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)

\(\Leftrightarrow y-x=6\)

\(\Rightarrow y=6+x\)

\(\Rightarrow\frac{1}{x}+\frac{1}{6+x}=\frac{1}{4}\)

\(\Leftrightarrow4\left(6+x\right)+4x=x^2+6x\)

\(\Leftrightarrow24+8x=x^2+6x\)

\(\Leftrightarrow x^2-2x-24=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-4\left(l\right)\end{cases}}\)

Vậy đội 1 làm trong \(6h\); đội 2 làm trong \(12h\)

31 tháng 1 2021

Gọi thời gian tổ 1 làm một mình xong công việc là x(h); thời gian tổ 1 làm một mình xong công việc là y(h)  (ĐK: x, y > 0)

Một giờ tổ 1 làm được: \(\dfrac{1}{x}\) (Công việc)

Một giờ tổ 2 làm được: \(\dfrac{1}{y}\) (Công việc)

Một giờ cả hai tổ làm được: \(\dfrac{1}{12}\) (Công việc)

Vì một giờ cả hai tổ làm được \(\dfrac{1}{12}\) công việc nên ta có pt:

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\) (1)

Tổ 1 làm chung với tổ 2 trong 4 giờ thì phải đi làm việc khác nên tổ 1 làm được: \(\dfrac{4}{x}\) (Công việc)

Tổ 2 làm chung với tổ 1 trong 4 giờ và làm xong công việc còn lại trong 10 giờ nên tổ 2 làm được: \(\dfrac{4}{y}+\dfrac{10}{y}=\dfrac{14}{y}\) (Công việc)

Vì hai tổ làm xong 1 công việc nên ta có pt:

\(\dfrac{4}{x}+\dfrac{14}{y}=1\) (2)

Từ (1) và (2) ta có hpt:

(I) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{4}{x}+\dfrac{14}{y}=1\end{matrix}\right.\)

Giải hpt:

(I) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\dfrac{4}{x}+\dfrac{4}{y}=\dfrac{1}{3}\\\dfrac{4}{x}+\dfrac{14}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}-\dfrac{10}{y}=\dfrac{-2}{3}\\\dfrac{4}{x}+\dfrac{14}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y=15\\\dfrac{4}{x}+\dfrac{14}{15}=1\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}y=15\\\dfrac{4}{x}=\dfrac{1}{15}\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=60\\y=15\end{matrix}\right.\) (TM)

Vậy tổ 1 làm một mình trong 60h thì xong công việc đó

tổ 2 làm một mình trong 15h thì xong công việc đó

Chúc bn học tốt!

 

31 tháng 1 2021

Gọi thời gian tổ 1 làm một mình xong công việc là x(h); thời gian tổ 1 làm một mình xong công việc là y(h)  (ĐK: x, y > 0)

Một giờ tổ 1 làm được: 1x (Công việc)

Một giờ tổ 2 làm được: 1y (Công việc)

Một giờ cả hai tổ làm được: 112 (Công việc)

Vì một giờ cả hai tổ làm được 112 công việc nên ta có pt:

1x+1y=112 (1)

Tổ 1 làm chung với tổ 2 trong 4 giờ thì phải đi làm việc khác nên tổ 1 làm được: 4x (Công việc)

Tổ 2 làm chung với tổ 1 trong 4 giờ và làm xong công việc còn lại trong 10 giờ nên tổ 2 làm được: 4y+10y=14y (Công việc)

Vì hai tổ làm xong 1 công việc nên ta có pt:

4x+14y=1 (2)

Từ (1) và (2) ta có hpt:

(I)