Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ít nhất 1 câu hình học, nhiều nhất là 3 câu hình học, bởi giới hạn chỉ được bốc 3 câu hỏi
Khong gian mau: \(n\left(\Omega\right)=C^3_{15}\)
TH1: Bốc 1 câu hình học và 2 câu đại số
\(C^1_5.C^2_{10}\)
TH2: Bốc 2 câu hình học và 1 câu đại số
\(C^2_5.C^1_{10}\)
TH3: Bốc 3 câu hình học
\(C^3_5\)
\(\Rightarrow C^1_5.C^2_{10}+C^2_5.C^1_{10}+C^3_5=..\)
\(p\left(A\right)=\dfrac{C^1_5.C^2_{10}+C^2_5.C^1_{10}+C^3_5}{C^3_{15}}=...\)
Ω: "Chọn 3 câu hỏi từ 15 câu."
⇒ n(Ω) = \(C^3_{15}=455\)
A: "Chọn được ít nhất 1 câu hỏi Hình học."
⇒ \(\overline{A}\): "Không chọn được câu Hình học nào."
\(\Rightarrow n\left(\overline{A}\right)=C^3_{10}=120\)
\(\Rightarrow P\left(\overline{A}\right)=\dfrac{120}{455}=\dfrac{24}{91}\)
\(\Rightarrow P\left(A\right)=1-P\left(\overline{A}\right)=\dfrac{67}{91}\)
Bạn tham khảo nhé!
Đáp án A
Thí sinh thi được 26 điểm do đó có 6 phương án đúng và 4 phương án sai
Xác suất cần tìm sẽ là:
=> Chọn phương án A.
Chú ý: Công thức tổng quát cho bài toán n câu hỏi và a đáp án đúng sẽ là
CHỊUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
Đáp án A
Lấy ngẫu nhiên từ ngân hàng đề thi 4 câu hỏi để lập một đề thi
có C 20 4 = 4845 đề thi.
Thí sinh A rút ngẫu nhiên được 1 đề thi có 2 câu đã thuộc
có C 10 2 . C 10 2 = 2025 trường hợp.
Thí sinh A rút ngẫu nhiên được 1 đề thi có 3 câu đã thuộc
có C 10 3 . C 10 1 = 1200 trường hợp.
Thí sinh A rút ngẫu nhiên được 1 đề thi có 4 câu đã thuộc
có C 10 4 = 210 trường hợp.
Do đó, thí sinh A rút ngẫu nhiên được 1 đề thi có ít nhất 2 câu đã thuộc
có 2025 + 1200 + 210 = 3435 trường hợp.
Vậy xác suất để thí sinh A rút ngẫu nhiên được 1 đề thi có ít nhất 2 câu đã thuộc là
3435 4845 = 229 323
Đáp án A
Lấy ngẫu nhiên từ ngân hàng đề thi 4 câu hỏi để lập một đề thi có C 20 4 = 4845 đề thi.
Thí sinh A rút ngẫu nhiên được 1 đề thi có 2 câu đã thuộc
có C 10 2 . C 10 2 = 2025 trường hợp.
Thí sinh A rút ngẫu nhiên được 1 đề thi có 3 câu đã thuộc
có C 10 3 . C 10 1 = 1200 trường hợp.
Thí sinh A rút ngẫu nhiên được 1 đề thi có 4 câu đã thuộc
có C 10 4 = 210 trường hợp.
Do đó, thí sinh A rút ngẫu nhiên được 1 đề thi có ít nhất 2 câu đã thuộc
có 2025 + 1200 +210 =3435 trường hợp.
Vậy xác suất để thí sinh A rút ngẫu nhiên được 1 đề thi có ít nhất 2 câu đã thuộc là
3435 4845 = 229 323
Đáp án A
Số cách chọn ngẫu nhiên 2 giáo viên từ 30 giáo viên là:
Số cách chọn ngẫu nhiên 2 giáo viên khác trường là:
Xác suất chọn 2 giáo viên khác trường là:
Đáp án A
Với mỗi câu hỏi, thí sinh có 4 phương án lựa chọn nên số phần tử của không gian mẫu là
n Ω = 4 10
Gọi X là biến cố “thí sinh đó đạt từ 8,0 điểm trở lên”
TH1. Thí sinh đó làm được 8 câu ( tức là 8,0 điểm):
Chọn 8 câu trong số 10 câu hỏi và 2 câu còn lại mỗi câu có 3 cách lựa chọn
đáp án sai nên có C 10 8 . 3 2 cách để thí sinh đúng 8 câu
TH2. Thí sinh đó làm được 9 câu (tức là 9,0 điểm)
Chọn 9 câu trong số 10 câu hỏi
và câu còn lại có 3 cách lựa chọn đáp án sai
nên có C 10 9 . 3 1 cách để thí sinh đúng 9 câu
TH3. Thí sinh đó làm được 10 câu (tức là 10,0 điểm)
Chỉ có 1 cách duy nhất.
Suy ra số kết quả thuận lợi cho biến cố X là
Vậy xác suất cần tìm là
P = n ( X ) n ( Ω ) = 436 4 10
Đáp án A
Với mỗi câu hỏi, thí sinh có 4 phương án lựa chọn nên số phần tử của không gian mẫu là
Gọi X là biến cố “thí sinh đó đạt từ 8,0 điểm trở lên”
TH1. Thí sinh đó làm được 8 câu (tức là 8,0 điểm): Chọn 8 câu trong số 10 câu hỏi và 2 câu còn lại mỗi câu có 3 cách chọn đáp án sai nên có cách để thí sinh đúng 8 câu.
TH2. Thí sinh đó làm được 9 câu (tức là 9,0 điểm): Chọn 9 câu trong số 10 câu hỏi và câu còn lại có 3 cách lựa chọn đáp án sai nên có cách để thí sinh đúng 9 câu.
TH3. Thí sinh đó làm được 10 câu (tức là 10,0 điểm): Chỉ có 1 cách duy nhất .
Suy ra số kết quả thuận lợi cho biến cố X là
Vậy xác suất cần tìm là
Trong không gian mẫu \(\Omega\) là tập hợp gồm tất cả các cặp hai bộ 3 câu hỏi, mà ở vị trí thứ nhất của cặp là bộ 3 câu hỏi thí sinh A chọn và ở vị trí thứ hai của cặp là bộ 3 câu hỏi thí sinh B chọn
Vì A cũng như B đều có \(C_{10}^3\) cách chọn 3 câu hỏi tứ 10 câu hỏi thí sinh nên theo quy tắc nhân ta có \(n\left(\Omega\right)=\left(C_{10}^3\right)^2\)
Kí hiệu X là biến cố " bộ 3 câu hỏi A chọn và bộ 3 câu hỏi B chọn là giống nhau"
Vì mỗi cách chọn 3 câu hỏi của A, B chỉ có duy nhất cách chọn 3 câu hỏi giống như A nên \(n\left(\Omega_X\right)=C_{10}^3.1=C_{10}^3\)
Vì vậy \(P\left(X\right)=\frac{n\left(\Omega_X\right)}{n\left(\Omega\right)}=\frac{C^3_{10}}{\left(C^3_{10}\right)^2}=\frac{1}{C^3_{10}}=\frac{1}{120}\)
Bạn cho mình hỏi tại sao lại là \(^{C_{10}^3}.1\)