Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét \(\Delta ABD\) và \(\Delta CDB\) có:
AB=CD (gt)
\(\widehat {ABD} = \widehat {CDB}\) (gt)
BD chung
Vậy \(\Delta ABD = \Delta CDB\)(c.g.c)
b)Xét \(\Delta OAD\) và \(\Delta OCB\) có:
AO=CO (gt)
\(\widehat {AOD} = \widehat {COB}\) (đối đỉnh)
OD=OB (gt)
Vậy \(\Delta OAD = \Delta OCB\)(c.g.c)
ΔABC và ΔADC có
AC chung
Góc ACB = góc DCB
BC = DC
⇒ ΔABC = ΔADC ( cạnh – góc – cạnh)
a) Theo trường hợp cạnh – góc – cạnh ta cần AD = CD để 2 tam giác bằng nhau
b) Theo trường hợp cạnh – góc – cạnh ta cần KN = MN để 2 tam giác bằng nhau
phải có hình hoặc số đo cạnh hoặc góc thì mới so sánh đc chứ
in chào bạn. Tôi là Liana. Tôi đã **** trong một vụ tai nạn năm tôi 6 tuổi. Bạn phải đọc hết tin nhắn này nếu không bạn sẽ gặp xui xẻo cả đời.
Hiện tại thì tôi có thể đang ở rất gần bạn và tôi yêu cầu bạn phải chia sẻ tin nhắn này cho 20 người nữa. Nếu không làm được, bạn sẽ ****.
Ví dụ 1: Có một chàng trai tên là Meson, anh ấy đọc được tin nhắn này. Nhưng anh đã cười nhạo và không chia sẻ cho 20 người nên vào 2 giờ sáng, anh ấy đã *** do một vụ tai nạn. Một cái *** giống y hệt của tôi. Là tôi làm đấy!
Ví dụ 2: Một có gái trẻ tên là Alisean. Cô cũng nhận được dòng tin nhắn này nhưng cô chỉ chia sẻ cho 10 người và cô đã gặp ác mộng suốt phần đời còn lại
Thêm một ví dụ nữa: Có ba người bạn thân và họ tên là Tini Ly, Miin dukki và Anna An. Họ đang chơi đùa vui vẻ thì nhận được những dòng tin nhắn này và họ đã gửi ngay cho 20 người. Vậy là họ trở thành những con người may mắn. Họ được mọi người yêu quý, điểm số của họ cũng rất cao.
Vậy bạn muốn giống ai? Hãy gửi tiếp cho 20 người để được may mắn hoặc không thì bạn sẽ xui xẻo hoặc ****. Trò chơi sẽ bắt đầu từ lúc bạn đọc những dòng tin nhắn này. CHÚC BẠN MAY MẮN
a) Xét 2 tam giác vuông ABC và ADC có:
\(\widehat {ACB} = \widehat {ACD}( = 90^\circ )\)
AC chung
\(\widehat {BAC} = \widehat {DAC}\)(gt)
=>\(\Delta ABC = \Delta ADC\)(g.c.g)
b) Xét 2 tam giác vuông HEG và GFH có:
HE=GF(gt)
HG chung
=>\(\Delta HEG = \Delta GFH\)(cạnh huyền - cạnh góc vuông)
c) Xét 2 tam giác vuông QMK và NMP có:
QK=NP(gt)
\(\widehat K = \widehat P\)(gt)
=>\(\Delta QMK = \Delta NMP\)(cạnh huyền – góc nhọn)
d) Xét 2 tam giác vuông VST và UTS có:
VS=UT(gt)
ST chung
=>\(\Delta VST = \Delta UTS\)(2 cạnh góc vuông)
Xét tam giác ABC và tam giác ABD:
AC = AD; BC = BD, cạnh AB chung.
Vậy \(\Delta ABC = \Delta ABD\)(c.c.c)
- Hình 68
Xét tam giác ABC và tam giác ABD có:
AB = AB (cạnh chung)
AC = AD (gt)
BC = BD (gt)
Vậy ΔABC = ΔABD (c.c.c)
- Hình 69
Xét tam giác MNQ và tam giác QPM có:
MN = QP (gt)
NQ = PM (gt)
MQ cạnh chung
Vậy ΔMNQ = ΔQPM (c.c.c)
- Hình 70
Xét tam giác EHI và tam giác IKE có:
EH = IK (gt)
HI = KE (gt)
EI = IE (cạnh chung)
Vậy ΔEHI = ΔIKE (c.c.c)
Xét tam giác EHK và tam giác IKH có:
EH = IK (gt)
EK = IH (gt)
HK = KH (cạnh chung)
Vậy ΔEHK = ΔIKH (c.c.c)
a) Xét \(\Delta{ABC}\) và \(\Delta{EDC}\), ta có:
AC = CE
\(\widehat {ACB}\)= \(\widehat {DCE}\) ( 2 góc đối đỉnh )
CB = CD
\(\Rightarrow \Delta{ABC}=\Delta{EDC}\) (c.g.c)
b) Ta thấy 2 tam giác ABC và BDE không bằng nhau vì
\(AC \ne BE;BC \ne BD;DE \ne AC\)
* Hình 14a:
Xét ∆ABC và ∆EDC có:
BC = DC (giả thiết);
^ACB = ^ECD (hai góc đối đỉnh);
AC = EC (giả thiết).
Do đó ∆ABC = ∆EDC (c.g.c).
* Hình 14b:
Không có cạnh nào của tam giác ABC bằng với cạnh của tam giác EBD nên hai tam giác này không bằng nhau.
Vậy Hình 14a có ∆ABC = ∆EDC (c.g.c); Hình 14b hai tam giác ABC và EBC không bằng nhau.