Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Số thư nhất là (80+14)/2=47
Số thứ hai là 47-14=33
Bài 3:
Gọi số thứ nhât là x
=>Số thứ hai là 7-x
Theo đề, ta co hệ: \(\dfrac{1}{x}+\dfrac{1}{7-x}=\dfrac{7}{12}\)
=>\(\dfrac{7-x+x}{x\left(7-x\right)}=\dfrac{7}{12}\)
=>x(7-x)=12
=>x(x-7)=-12
=>x^2-7x+12=0
=>x=3 hoặc x=4
=>Hai số cần tìm là 3;4
Bài 2 :
Gọi \(x,y\) là 2 số đó
Theo đề, ta có hệ pt :
\(\left\{{}\begin{matrix}x+y=80\\x-y=14\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=47\\y=33\end{matrix}\right.\)
Vậy 2 số đó là 47 và 33
Bài 3 :
Gọi \(x,y\) là 2 số cần tìm
Theo đề, ta có hệ pt :
\(\left\{{}\begin{matrix}x+y=7\\x-y=\dfrac{7}{12}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{91}{24}\\y=\dfrac{77}{24}\end{matrix}\right.\)
Vậy 2 số đó là \(\dfrac{91}{24};\dfrac{77}{24}\)
Câu 2:
Gọi số phải tìm là ab
Vì tổng các chữ số của số cần tìm là 9 nên a+b=9(1)
Vì khi thêm vào số đó 63 đơn vị thì số thu được cũng viết bằng hai chữ số đó nhưng theo thứ tự ngược lại nên \(10a+b+63=10b+a\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=9\\10a+b+63=10b+a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\10a+b+63-10b-a=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\9a-9b=-63\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\a-b=-7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\9-b-b=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=9-b\\-2b=-16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=9-8=1\\b=8\end{matrix}\right.\)
Vậy: Số cần tìm là 18
Gọi tuổi của an là xy .
Nếu đổi chữ số hàng đơn vị và hàng chục thì ta được số mới lớn hơn số cũ 36 đơn vị nên ta có pt :
10y+x-10x-y=36 => 9y-9x=4 => x-y=-4 (1)
Tổng ba lần chữ số hàng chục và hàng đơn vị bằng 8 nên ta có pt:
3x+y=8 (2)
Từ (1) và (2) , ta có hpt:
\(\hept{\begin{cases}x-y=-4\\3x+y=8\end{cases}}\)=>\(\hept{\begin{cases}4x=4\\x-y=-4\end{cases}}\)=>\(\hept{\begin{cases}x=1\\y=5\end{cases}}\)
Vậy năm nay an 15 tuổi.
Gọi số thứ nhất và số thứ hai phải tìm lần lượt là a,b
+)Theo đầu bài tổng của 2 số này bằng 17
=>ta có phương trình:a+b=17(1)
+)Nếu tăng thêm số thứ nhất 3 đơn vị và tăng số thứ 2 2 đơn vị thì tích của chúng bằng 105
=>ta có phương trình:(a+3)(b+2)=105(2)
Từ (1)(2) ta có hệ phương trình
<=>
Giải pt (x)
(17-b+3)(b+2)=105
<=>(20-b)(b+2)=105
<=>-b^2+18b+40=105
<=>b^2-18b-40=-105
<=>b^2-18b+65=0
<=>b^2-13b-5b+65=0
<=>b(b-13)-5(b-13)=0
<=>(b-5)(b-13)=0
<=>b=5 hoặc b=13
+)nếu b=5=>a=12
+)nếu b=13=>a=4
Vậy 2 số phải tìm là(12;5);(4;13)
gọi số cần tìm là ab
ta có : a-b = 7 => a=7+b ; ab = 3 ba +5 => 10a + b = 3 ( 10b+a) +5
thay a= 7 +b vào rùi tự làm phần còn lại nhé
Gọi chữ số hàng chục và đvị lần lượt là x và y (0<x≤9; 0≤y≤9)
Vì chứ số hàng chục ít hơn hàng đơn vị là 2 nên ta có: y-x=2 (1)
Nếu viết thêm chữ số 1 vào giữa hai chữ số đã cho thì được số mới lớn hơn số cũ 460 đơn vị nên ta có:
100x+10+y-10x-y=460
⇔90x=450
⇔x=5
⇒y=7
Số đó là 57
Bài này không cần lập hệ bạn nhé.
Gọi số cần tìm là \(\overline{xy}\)
+) Do hiệu của 3 lần chữ số hàng chục với 2 lần chữ số hàng đơn vị là 11 nên ta có phương trình \(3x-2y=11\left(1\right)\)
+) Lại có, nếu đổi chữ số hàng chục và hàng đơn vị cho nhau, ta sẽ được 1 số mới nhỏ hơn số cũ 18 đơn vị, hay
\(\overline{xy}-\overline{yx}=18\Leftrightarrow\left(10x+y\right)-\left(10y+x\right)=18\Leftrightarrow9x-9y=18\Leftrightarrow x-y=2\left(2\right)\)
Từ (1) và (2), ta có hệ phương trình:
\(\left\{{}\begin{matrix}3x-2y=11\\x-y=2\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}3x-2y=11\\2x-2y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=7\\y=5\end{matrix}\right.\)
Vậy số cần tìm là 75
Gọi số cần tìm là \(\overline{ab}\) (0<a<10; 0<b<10) => 3a - 2b = 11 (1)
Khi đổi chỗ hai chữ số cho nhau được số mới là \(\overline{ba}\)
Do số mới nhỏ hơn số cũ 18 đơn vị => \(\overline{ab}\) - \(\overline{ba}\) = 18
⇔ 10a + b - 10b - a = 18
⇔ 9a - 9b = 18 (2)
Từ (1) và (2) ta có hệ phương trình:\(\left\{{}\begin{matrix}3a-2b=11\\9a-9b=18\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}9a-6b=33\\9a-9b=18\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}-3b=-15\\9a-9b=18\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}a=7\\b=5\end{matrix}\right.\) (tm)
Vậy số cần tìm là 75
mắc cười không chịu nổi. toán lớp 2 đi bảo toán lớp 9. ha ha ha...
kết quả là 1 nha.