Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử, khi khai triển thập phân, 2^2003 có a chữ số và 5^2003 có b chữ số.
-Ta có: a,b>0(a,b thuộc Z) và:
10^a-1<2^2003<10^a
10^b-1<5^2003<10^b
Nhân hai vế với nhau ta được:
10^a+b-2<10^2003<10^a+b
=>a+b-2<2003<a+b
hay 2003<a+b<2005
=>a+b=2004
Vậy số đó có 2004 chữ số.
mình biết để mình chỉ cho bạn nhưng bạn phải hứa là học giỏi hơn nha
biến đổi đề bài thành: 2^2003 có n chữ số; 5^2003 có m chữ số ; tính m + n.
Ta có:
\(10^{m-1}< 5^{2003}< 10^m;10^{n-1}< 2^{2003}< 10^n\).(Vì cả 2^2003 và 5^2003 đều không chia hết cho 10.).
\(\Rightarrow10^{m+n-2}< 10^{2003}< 10^{m+n}\)(Nhân 2 vế với nhau)
\(\Rightarrow2003< m+n< 2005\)
\(\Rightarrow m+n=2004\)
Vậy 2 số đó viết liền nhau có 2004 chữ số.