Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x(h) là thời gian người thứ hai hoàn thành công việc khi làm một mình(Điều kiện: x>0)
Thời gian người thứ nhất hoàn thành công việc khi làm một mình là:
x+6(h)
Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x+6}\)(công việc)
Trong 1 giờ, người thứ hai làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, hai người làm được: \(\dfrac{1}{4}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x+6}+\dfrac{1}{x}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{4x}{4x\left(x+6\right)}+\dfrac{4\left(x+6\right)}{4x\left(x+6\right)}=\dfrac{x\left(x+6\right)}{4x\left(x+6\right)}\)
Suy ra: \(x^2+6x=8x+24\)
\(\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow x^2-6x+4x-24=0\)
\(\Leftrightarrow x\left(x-6\right)+4\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(nhận\right)\\x=-4\left(loại\right)\end{matrix}\right.\)
Vậy: Người thứ nhất cần 12 giờ để hoàn thành công việc khi làm một mình
Người thứ hai cần 6 giờ để hoàn thành công việc khi làm một mình
Bài giải:
Giả sử nếu làm riêng thì người thứ nhất hoàn thành công việc trong x giờ, người thứ hai trong y giờ. Điều kiện x > 0, y > 0.
Trong 1 giờ người thứ nhất làm được công việc, người thứ hai công việc, cả hai người cùng làm chung thì được công việc.
Ta được + = .
Trong 3 giờ, người thứ nhất làm được \(\frac{4}{x}\) công việc, trong 6 giờ người thứ hai làm được \(\frac{6}{y}\)công việc, cả hai người làm được 25% công việc hay \(\frac{1}{4}\)công việc.
Ta được \(\frac{4}{x}\)+ \(\frac{6}{y}\)= \(\frac{1}{4}\)có hệ phương trình: \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{16}\\\frac{4}{x}+\frac{6}{y}=\frac{1}{4}\\\end{cases}}\)
Giải ra ta được x = 24, y = 48.
Vậy người thứ nhất 24 giờ, người thứ hai 48 giờ.
~Học tốt!~
Người thứ nhất làm hết 20 giờ
Người thứ 2 làm hết 30 giờ
1h người thứ nhất làm xong số phần công vc là: 2/5 : 4 = 1/10 (cv)
1h người thứ hai làm xong số phần công vc là:2/5 : 6 = 1/15 (cv)
Người thứ nhất làm 1 mk hết số thời gian là: 1 : 1/10 = 10 (h)
Người thứ 2 hai làm 1 mk hết số thời gian là: 1 : 1/15 = 15 (h)
Chúc bạn học tốt!
Trong 1 giờ hai người cùng làm được : 1 : 12 = \(\dfrac{1}{12}\) (cv)
Trong 4 giờ hai người cùng làm được : \(\dfrac{1}{12}\) x 4 = \(\dfrac{1}{3}\) (cv)
Trong 2 giờ người thứ hai làm được : \(\dfrac{2}{5}\) - \(\dfrac{1}{3}\) = \(\dfrac{1}{15}\) (cv)
Trong 1 giờ người thứ hai làm được : \(\dfrac{1}{15}\) : 2 = \(\dfrac{1}{30}\) (cv)
Trong 1 giờ người thứ nhất làm được : \(\dfrac{1}{12}\) - \(\dfrac{1}{30}\) = \(\dfrac{1}{20}\) (cv)
Nếu làm một mình người thứ nhất hoàn thành công việc sau:
1 : \(\dfrac{1}{20}\) = 20 ( giờ)
Nếu làm một mình thì người thứ hai hoàn thành công việc sau :
1 : \(\dfrac{1}{30}\) = 30 ( giờ)
Kết luận :..........
Gọi thời gian người thứ nhất làm một mình hết công việc là x(giờ) và thời gian người thứ hai làm một mình hết công việc(Điều kiện: x>0;y>0)
Thời gian người thứ hai làm một mình hết công việc là: \(y=\dfrac{3}{2}x\)(giờ)
Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, người thứ hai làm được: \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai người làm được: \(\dfrac{1}{24}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{24}\)(2)
Vì khi làm một mình làm xong công việc thì người thứ hai mất một thời gian bằng 3/2 thời gian làm việc của người thứ nhất nên khi làm một mình trong 1 giờ thì người thứ hai cũng mất một thời gian bằng 3/2 thời gian làm việc trong 1 giờ của người thứ nhất
hay \(\dfrac{1}{x}=\dfrac{3}{2}\cdot\dfrac{1}{y}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{24}\\\dfrac{1}{x}=\dfrac{3}{2}\cdot\dfrac{1}{y}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{2}\cdot\dfrac{1}{y}+\dfrac{1}{y}=\dfrac{1}{24}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{24}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2}\cdot\dfrac{1}{y}=\dfrac{1}{24}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{24}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{60}\\\dfrac{1}{x}+\dfrac{1}{60}=\dfrac{1}{24}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=60\\\dfrac{1}{x}=\dfrac{1}{24}-\dfrac{1}{60}=\dfrac{1}{40}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=60\end{matrix}\right.\)(thỏa ĐK)
Vậy: Người thứ nhất cần 40 giờ để hoàn thành công việc khi làm một mình
Người thứ hai cần 60 giờ để hoàn thành công việc khi làm một mình
Ủa bạn ơi bài này bạn dùng kiến thức phương trình bậc nhất một ẩn phải ko ạ ?
Gọi 1h công nhân thứ 1,2 làm được a,ba,b (phần công việc )
Theo bài ta có :18(a+b)=1
6a+12b=1\2
{a=1\36
b=1\36
→→ Nếu làm riêng thì mỗi người hoàn thành công việc đó trong 36h
*tk
Gọi thời gian người thứ nhất làm 1 mình xong công việc là x(h)
Gọi thời gian người thứ hai làm một mình xong việc là y(h),(x,y>18)
Trong 1 giờ người thứ nhất làm được :x (công việc); người thứ 2 làm được :y (công việc).
Vì 2 người cùng làm thì trong 18h thì xong việc nên nên ta có phương trình sau: x+y=118(1)
Nếu người thứ nhất làm 6h và người thứ 2 làm 12h thì chỉ hoàn thành được 50% công việc nên ta có phương trình sau: 6x+12y=50%=12(2)
Từ (1) và (2) ta có hệ phương trình:
x+y=118 và6x+12y=12
x=36(tm) và y=36(tm
Vậy thời gian người thứ nhất làm 1 mình xong công việc là 36h, thời gian người thứ hai làm một mình xong việc là 36h.
toán lập phương trình nha bạn