Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian người 1 và người 2 hoàn thành công việc khi làm một mình lần lượt là a,b
Trong 1h, người 1 làm được 1/a(công việc)
Trong 1h, người 2 làm được 1/b(công việc)
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{8}\\\dfrac{2}{a}+\dfrac{1}{b}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{1}{a}=-\dfrac{1}{8}\\\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=8\\\dfrac{1}{b}=0\left(loại\right)\end{matrix}\right.\)
=>Không có cặp (a,b) nào thỏa mãn bài toán
Gọi a là thời gian làm xong công việc của người thứ nhất nếu làm một mình, b là thời gian làm xong công việc của người thứ 2 nếu làm một mình
=>1 ngày 2 người làm được lần lượt là 1/a và 1/b công việc
Mà 2 người cùng làm thì mất 6 ngày => 1 ngày 2 người cùng làm sẽ được 1/6 công việc
=> 1/a + 1/b = 1/6 (1)
Người thứ 1 làm việc trong 4 ngày thì được 1/a . 4 = 4/a công việc
Người thứ 2 làm việc trong 6 ngày thì được 1/b . 6 = 6/b công việc
Mà làm như thế mới được 4/5 công việc
=> 4/a + 6/b = 4/5 (2)
Từ (1) và (2) thì giải hệ phương trình, ta được:
a = 10
b = 15
Vậy : .......
Gọi x, y (ngày) lần lượt là thời gian mà người thứ nhất và người thứ hai làm riêng xong công việc. Điều kiện: x > 4, y > 4.
Như vậy, trong 1 ngày người thứ nhất làm được 1/x (công việc), người thứ hai làm được 1/y (công việc).
Trong 1 ngày, cả hai người làm được 1 : 4 = 1/4 (công việc)
Ta có phương trình: 1/x + 1/y = 1/4
Nếu người thứ nhất làm một mình trong 9 ngày rồi người thứ hai đến cùng làm tiếp trong 1 ngày nữa thì xong việc, ta có phương trình:
10/x + 1/y = 1
Ta có hệ phương trình:
Ta có: 1/x = 1/12 ⇔ x = 12
1/y = 1/6 ⇔ y = 6
Giá trị của x và y thỏa điều kiện bài toán.
Vậy người thứ nhất làm một mình xong công việc trong 12 ngày, người thứ hai làm một mình xong công việc trong 6 ngày.
Sao lại có số 10 vậy bạn , người thứ nhất làm xong 9 ngày mà có số 10 nên mik ko hiểu lắm ??
Gọi thời gian làm riêng của 2 người làm xong công việc lần lượt a ; b ( a;b > 0 )
1 giờ người thứ nhất làm được 1/a công việc
1 giờ người thứ 2 làm được 1/b công việc
Theo bài ra ta có hệ phương trình \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{5}{36}\\\dfrac{6}{x}+\dfrac{3}{y}=\dfrac{2}{3}\end{matrix}\right.\)Đặt 1/x = u ; 1/y = v
\(\Leftrightarrow\left\{{}\begin{matrix}u+v=\dfrac{5}{36}\\6u+3v=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}u=\dfrac{1}{12}\\v=\dfrac{1}{18}\end{matrix}\right.\)Theo cách đặ x = 12 ; y = 18
Vậy ...
gọi số thời gian mỗi người làm một mk xong công vc là x,y (h)(x,y>5/12)
1h người 1 làm đc là 1/x (cv)
1h người thứ 2 làm đc 1/y (cv)
1h cả 2 người làm đc là 1/x +1/y = 5/12 (cv) (1)
nếu làm riêng thì người 1 làm ít hơn người 2 là 2h
x +2 = y (2)
thế 2 vào 1 giải pt là ra
mk chỉ giúp đc vậy thôi còn lại bn tự làm nha
#mã mã#
Gọi số ngày người thứ nhất làm một mình xong việc là x
số ngày người thứ nhất làm một mình xong việc là
Hai người cùng làm chung một công việc mất 12h mới xong nên ta có pt
1/x+1/y=1/12 (1)
nếu người thứ nhất làm một mình trong 4h, sau đó người thứ hai tiếp tục làm một mình trong 6h thì 2 người làm được 40%=2/5 công việc nên ta có pt
4/x+6/y=2/5 (2)
từ 1 và 2 ta có hệ
1/x+1/y=1/12
4/x+6/y=2/5
giải hệ ta được
x=20h
y=30h
Gọi x là thời gian người thứ nhất hoàn thành x (ngày)
Gọi y là thời gian người thứ hai hoàn thành y (ngày )
điều kiện ( x,y >o)
Trong 1 ngàyngười thứ 1 làm được \(\dfrac{1}{x}\)công việc
Trong 1 ngày người thứ 2 làm được \(\dfrac{1}{y}\)công việc
Vì 2 người cùng làm chung 1 công việc thì 20 ngày thì xong nên ta có :
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{20}\)
Nếu người thứ nhất làm 12 ngày và người thứ hai làm trong 15 ngày chỉ được công việc
=))\(\dfrac{12}{x}\)+\(\dfrac{15}{y}\)=\(\dfrac{2}{3}\)(2)
Từ (1) và (2) Ta có hpt :
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{20}\\\dfrac{12}{x}+\dfrac{15}{y}=\dfrac{2}{3}\end{matrix}\right.\) Đặt \(\dfrac{1}{x}\)là u; \(\dfrac{1}{y}\)là v
Ta có
\(\left\{{}\begin{matrix}u+v=\dfrac{1}{20}\\12u+15v=\dfrac{2}{3}\end{matrix}\right.\left(=\right)\left\{{}\begin{matrix}12u+12v=\dfrac{3}{5}\left(x12\right)\\12u+15v=\dfrac{2}{3}\end{matrix}\right.\left(=\right)-3v=-\dfrac{1}{15}\left(=\right)v=\dfrac{1}{45
}\)
Thay v=\(\dfrac{1}{45}\) vào pt \(12u+15v=\dfrac{2}{3}\left(=\right)12u+15\left(\dfrac{1}{45}\right)=\dfrac{2}{3}.....\left(=\right)12u+\dfrac{1}{3}=\dfrac{2}{3}\left(=\right)12u=\dfrac{2}{3}-\dfrac{1}{3}\left(=\right)12u=\dfrac{1}{3}\left(=\right)u=\dfrac{1}{36}\)
\(\dfrac{1}{x}=\dfrac{1}{36}->x=36;\dfrac{1}{y}=\dfrac{1}{45}->y=45\)
Vậy Khi làm riêng đội 1 hoàn thành trong 36 ngày , đội thứ 2 hoàn thành trong 45 ngày
gọi thời gian người thứ nhất làm xong công việc là x(x>0)
thời gian người thứ hai làm xong công việc là y(y>0)
1 ngày hai người làm chung sẽ làm được \(\frac{1}{x}+\frac{1}{y}\) (công việc)
ta có hệ phương trình \(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)
\(\frac{10}{x}+\frac{1}{y}=1\)
giải hệ phương trình trên ta sẽ tìm được
Dãy số có 2 chữ số chia hết cho 3 là:[12,15,....,99]
Khoảng cách của từng số hạng là 3
Số số hạng là: (99-12):3+1=30(số)
Vậy có 30 số có 2 chữ số chia hết cho 3
Gọi thời gian người thứ nhất làm một mình xong công việc là x ngày (x > 0)
\(\Rightarrow\)Mỗi ngày người thứ nhất làm được \(\frac{1}{x}\)công việc .
\(\Rightarrow\)Mỗi ngày người thứ hai làm được \(\frac{1}{2x}\)công việc
Vì hai người cùng làm 1 công việc trong 2 ngày thì xong
\(\Rightarrow\)Mỗi ngày hai người cùng làm được \(\frac{1}{2}\)công việc
Ta có phương trình :
\(\frac{1}{x}+\frac{1}{2x}=\frac{1}{2}\)
\(\Leftrightarrow\frac{2+1}{2x}=\frac{1}{2}\)
\(\Leftrightarrow\frac{3}{2x}=\frac{1}{2}\)
\(\Leftrightarrow x=3\)
Vậy nếu làm một mình thì người thứ nhất làm xong công việc trong 3 ngày
nếu làm một mình thì người thứ hai làm xong công việc trong 3.2 = 6 ngày