Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : λ = v/f = 80/100 = 0,8cm và d 1 = d 2 = d = 8cm.
Theo Bài 8 (SGK Vật lí 12), ta có :
d 1 + d 2 = 16cm = 20 λ d 2 - d 1 = 0
ta được : u M 1 = 2Acos(200 π t - 20 π )
\(\lambda = v/f = 0.8/100 = 0.008m = 0.8cm.\)
\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{0}{\lambda}-\frac{0}{2\pi})| = |2a| = 2a.\)
\(u_M = A_M\cos(2\pi ft - \pi\frac{d_2+d_1}{\lambda}+\frac{\varphi_1+\varphi_2}{2})\\= A_M\cos(200\pi t - \pi\frac{8+8}{0.8}+\frac{0}{2})= 2a\cos(200\pi t - \pi\frac{8+8}{0.8})= 2a\cos(200\pi t-20\pi)=2a\cos(200\pi t)\)
Chọn đáp án B
gọi d2 là khoảng cách từ s1 tới M2. Ta có d2-d1=k. lamda. M1M2 ngắn nhất khi k=+ -1.
Với k=+1. thì d2=d1+lamda=8,8cm
M1M2 = 7,84 – 6,93 = 0,91cm
Tương tự, với k=-1, đc M1M2=0,94cm.
Vậy đáp án B ( Chọn số nhỏ hơn)
S1 S2 M1 M2 d1 d2 4cm 4cm 8cm O x
Bước sóng: \(\lambda=\frac{v}{f}=\frac{80}{100}=0,8\)(cm).
M2 cùng pha với M1 nên: \(d_2-d_1=k\lambda\)
Do M2 gần M1 nhất nên \(k=\pm1\Rightarrow d_2-d_1 =\pm0,8\)cm.
TH1: k=1 \(\Rightarrow d_2-d_1=0,8 \Rightarrow d_2=8,8\)cm \(\Rightarrow x= M_2O-M_1O=\sqrt{8,8^2-4^2}-\sqrt{8^2-4^2}=0,91\)cm.
TH1: k=-1 \(\Rightarrow d_2-d_1=-0,8 \Rightarrow d_2=7,2\)cm \(\Rightarrow x= M_2O-M_1O=\sqrt{8^2-4^2}-\sqrt{7,2^2-4^2}=0,94\)cm.
Như vậy x nhỏ nhất ứng với TH1, khi đó M2 cách M1 khoảng nhỏ nhất là 0,91cm.
Đáp án: A
Bạn cho mình hỏi tại sao M2 cùng pha với M1 thì: d2 - d1 = k\(\lambda\)
Nếu tính toán liên quan đến 1 dao động của 1 điểm thì 2 phương trình đó là như nhau.
Nhưng trong giao thoa sóng, hay truyền sóng thì cần phải viết là Um=2acos(200pit-20pi) để thể hiện điểm này dao động trễ pha so với nguồn là bao nhiêu.
Đáp án B
Ta có λ = v f = 1 50 = 0 , 02 ( m ) = 2 c m
Hai điểm gần nhất dao động ngược pha cách nhau λ 2 = 1 c m
Bước sóng của sóng : λ = v/f = 120/20 = 6cm. S 1 S 2 = 18cm = 6 λ /2. Trừ hai điểm S 1 , S 2 thì trên đoạn thẳng S 1 S 2 có 5 điểm, tại đó mặt nước dao động mạnh nhất.
Vậy : "Nếu không tính gợn sóng thẳng trùng với đường trung trực của S 1 S 2 thì có 4 gợn sóng hình hypebol".
Khi hệ vân giao thoa đã ổn định thì trung điểm I của S 1 S 2 lại luôn luôn là cực đại giao thoa. Do đó, ta phải có :
S 1 I = S 2 I = k λ /2 + λ /4 = (2k + 1) λ /4
S 1 S 2 = 2 S 1 I = (2k + 1) λ /2
Ban đầu ta đã có : S 1 S 2 = 8cm = 10 λ = 20 λ /2
Vậy chỉ cần tăng khoảng cách S 1 , S 2 thêm λ /2 tức là 0,4 cm.
Khi đó nếu không kể đường trung trực của S 1 S 2 thì có 20 gợn sóng hình hypebol (vì gợn sóng là quỹ tích những điểm dao động mạnh hơn cả).