Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số đo các góc tạo thành lần lượt là 120 độ; 120 độ; 60 độ và 60 độ
a) Các cặp góc kề bù
\(\widehat{xOy}\) và \(\widehat{yOx'}\)
\(\widehat{yOx'}\) và \(\widehat{x'Oy'}\)
\(\widehat{x'Oy'}\) và \(\widehat{xOy'}\)
\(\widehat{xOy'}\) và \(\widehat{xOy}\)
Các cặp góc đối:
\(\widehat{xOy}\) và \(\widehat{x'Oy'}\)
\(\widehat{x'Oy}\) và \(\widehat{y'Ox}\)
b) Do \(\widehat{xOy}\) kề bù với \(\widehat{xOy'}\)
\(\Rightarrow\widehat{xOy}+\widehat{xOy'}=180^o\)
\(\Rightarrow\widehat{xOy'}=180^o-70^o=110^o\)
cho hai đường thẳng xx' và yy' cắt nhau tại O. biết x'Oy+xOy'=120o. Tính các góc xOy;yOx';x'Oy';y'Ox
Có: góc xOy+ góc xOy'=180o(kề bù)
suy ra: góc xOy'=180o - góc xOy=180o - 60o=120o
góc x'Oy'= góc xOy=60o( đối đỉnh)
Lại có: góc x'Oy=góc xOy'=120o(đối đỉnh)
CHÚC BẠN HỌC TỐT
Hình vẽ:
Giải:
Vì xx' và yy' cắt nhau tại O
Nên \(\widehat{xOy}\) và \(\widehat{yOx'}\) là hai góc kề bù
\(\Rightarrow\widehat{xOy}+\widehat{yOx'}=180^0\)
Áp dụng tích chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{\widehat{xOy}}{2}=\dfrac{\widehat{yOx'}}{3}=\dfrac{\widehat{xOy}+\widehat{yOx'}}{2+3}=\dfrac{180^0}{5}=36^0\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{xOy}=36^0.2\\\widehat{yOx'}=36^0.3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{xOy}=72^0\\\widehat{yOx'}=108^0\end{matrix}\right.\)
Vì xx' và yy' cắt nhau tại O
Nên \(\widehat{xOy}\) và \(\widehat{yOx'}\) là hai góc đối nhau
\(\Rightarrow\widehat{xOy}=\widehat{x'Oy'}=72^0\)
Vậy \(\widehat{x'Oy'}=72^0\).
Chúc bạn học tốt!
a
A