K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Δ=(-4)^2-4(2m-2)

=16-8m+8=-8m+24

Để phương trình có hai nghiệm phân biệt thì -8m+24>0

=>m<3

x1+x2=2x1x2

=>2(2m-2)=4

=>2m-2=2

=>2m=4

=>m=2(nhận)

Δ=(2m+2)^2-4(m^2+2)

=4m^2+8m+4-4m^2-8=8m-4

Để phương trình có 2 n0 phân biệt thì 8m-4>0

=>m>1/2

x1^2+3x2^2=4x1x2

=>x1^2-4x1x2+3x2^2=0

=>(x1-x2)(x1-3x2)=0

=>x1=x2 hoặc x1=3x2

TH1: x1=x2 

x1+x2=2m+2

=>x1=x2=m+1

x1x2=m^2+2

=>m^2+2=m^2+2m+1

=>2m=1

=>m=1/2(loại)

TH2: x1=3x2

x1+x2=2m+2

=>4x2=2m+2 và x1=3x2

=>x2=1/2m+1/2 và x1=3/2m+3/2

x1x2=m^2+2

=>3/4(m^2+2m+1)=m^2+2

=>m^2+2=3/4m^2+3/2m+3/4

=>1/4m^2-3/2m+5/4=0

=>m=5(nhận) hoặc m=1(nhận)

14 tháng 3 2022

a, \(\Delta=m^2-4\left(-4\right)=m^2+16\)> 0 

Vậy pt luôn có 2 nghiệm pb 

b, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-4\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=5\)

Thay vào ta được \(m^2-2\left(-4\right)=5\Leftrightarrow m^2+3=0\left(voli\right)\)

 

14 tháng 3 2022

Bạn ơi, mình có thể hỏi câu c được không ạ? Nếu không được thì không sao, mình cảm ơn câu trả lời của bạn ạ ^-^ chúc bạn một ngày tốt lành nhé.

3 tháng 8 2021

Để phương trình có 2 nghiệm x1,x2

\(\Leftrightarrow\Delta=\left(m-2\right)^2-4\cdot\left(-2m\right)\ge0\)

\(\Leftrightarrow m^2-4m+4+8m\ge0\)

\(\Leftrightarrow\left(m+2\right)^2\ge0\) (luôn đúng)

Theo định lí Vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-2m\end{matrix}\right.\)

Kết hợp định lí Vi-ét và đề bài ta có điều kiện:

\(\left\{{}\begin{matrix}x_1+x_2=m-2\\2x_1+3x_2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=m-2-x_2\\2\left(m-2-x_2\right)+3x_2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1=m-2-x_2\\2m-4-2x_2+3x_2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=3m-6\\x_2=4-2m\end{matrix}\right.\)

Cũng theo Vi-ét:

\(x_1x_2=-2m\) \(\Rightarrow\left(3m-6\right)\left(4-2m\right)=-2m\)

\(\Rightarrow-6m^2+26m-24=0\)

\(\Rightarrow\left[{}\begin{matrix}m=3\\m=\dfrac{4}{3}\end{matrix}\right.\)

Vậy \(m\in\left\{3;\dfrac{4}{3}\right\}\) thỏa mãn đề

Tick nha 😘

NV
3 tháng 8 2021

\(\Delta=\left(m-2\right)^2+8m=\left(m+2\right)^2\ge0;\forall m\Rightarrow\) phương trình đã cho luôn có nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-2m\end{matrix}\right.\)

Kết hợp hệ thức Viet và điều kiện đề bài ta được:

\(\left\{{}\begin{matrix}x_1+x_2=m-2\\2x_1+3x_2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x_1+2x_2=2m-4\\2x_1+3x_2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=3m-6\\x_2=-2m+4\end{matrix}\right.\)

Thế vào \(x_1x_2=-2m\)

\(\Rightarrow\left(3m-6\right)\left(-2m+4\right)=-2m\)

\(\Leftrightarrow-6m^2+26m-24=0\Rightarrow\left[{}\begin{matrix}m=3\\m=\dfrac{4}{3}\end{matrix}\right.\)

5 tháng 7 2021

a, x = 3 , x= -1

b, m = 3 , m = 1

8 tháng 5 2021

a. thay m=-4 vào (1) ta có:

\(x^2-5x-6=0\)

Δ=b\(^2\)-4ac= (-5)\(^2\) - 4.1.(-6)= 25 + 24= 49 > 0

\(\sqrt{\Delta}=\sqrt{49}=7\)

x\(_1\)=\(\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+7}{2}\)=6

x\(_2\)=\(\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{5-7}{2}\)=-1

vậy khi x=-4 thì pt đã cho có 2 nghiệm x\(_1\)=6; x\(_2\)=-1

 

NV
22 tháng 3 2022

\(\Delta=1+4m>0\Rightarrow m>-\dfrac{1}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=-m\end{matrix}\right.\)

Do \(x_1\) là nghiệm nên: \(x_1^2+x_1-m=0\Rightarrow x_1^2=-x_1+m\)

\(\Rightarrow x_1^3=-x_1^2+mx_1=-\left(-x_1+m\right)+mx_1=x_1-m+mx_1\)

Ta được: 

\(x_1^3+mx_2=-3\Leftrightarrow x_1-m+mx_1+mx_2=-3\)

\(\Leftrightarrow x_1-m+m\left(x_1+x_2\right)=-3\)

\(\Leftrightarrow x_1-m-m=-3\Rightarrow x_1=2m-3\)

\(\Rightarrow x_2=-1-x_1=-2m+2\)

Thế vào \(x_1x_2=-m\Rightarrow\left(2m-3\right)\left(-2m+2\right)=-m\)

\(\Leftrightarrow4m^2-11m+6=0\Rightarrow\left[{}\begin{matrix}m=\dfrac{3}{4}\\m=2\end{matrix}\right.\)

NV
27 tháng 3 2021

Đề bài sai bạn

Biểu thức \(\left|\dfrac{x_1+x_2+4}{x_1+x_2}\right|=\left|1+\dfrac{1}{m}\right|\)  này ko tồn tại max, chỉ tồn tại min

27 tháng 3 2021

Chúc thầy buổi tối vui vẻ . Thầy giúp em câu em vừa inb nhé !

Và cho em hỏi là thứ 2 từ 7-9h sáng thầy có online không ạ ?