K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2022

Gọi \(x\left(giờ\right),y\left(giờ\right)\) lần lượt là thời gian của đội thứ nhất và đội thứ hai làm riêng xong công việc (x, y > 0)

Trong một giờ hai đội làm được: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\) (công việc)

Đội thứ nhất làm trong 3 giờ rồi đội thứ hai làm tiếp trong 4 giờ được 0,8 công việc nên ta có:

\(\dfrac{3}{x}+\dfrac{4}{y}=0,8\)

Ta có hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\\dfrac{3}{x}+\dfrac{4}{y}=0,8\end{matrix}\right.\)

Đặt \(u=\dfrac{1}{x};v=\dfrac{1}{y}\), ta có:

\(\left\{{}\begin{matrix}u+v=\dfrac{1}{4}\\3u+4v=0,8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4u+4v=1\\3u+4v=0,8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4u+4v=1\\u=\dfrac{1}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4.\dfrac{1}{5}+4v=1\\u=\dfrac{1}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}v=\dfrac{1}{20}\\u=\dfrac{1}{5}\end{matrix}\right.\)

*) \(u=\dfrac{1}{5}\Leftrightarrow\dfrac{1}{x}=\dfrac{1}{5}\Leftrightarrow x=5\) (nhận)

*) \(v=\dfrac{1}{20}\Leftrightarrow\dfrac{1}{y}=\dfrac{1}{20}\Rightarrow y=20\) (nhận)

Vậy đội thứ nhất làm riêng trong 5 giờ xong công việc

đội thứ hai làm riêng trong 20 giờ xong công việc

DD
30 tháng 5 2021

Gọi thời gian mỗi đội làm một mình để xong công việc lần lượt là \(x,y\left(h\right);x,y>0\).

Mỗi giờ mỗi đội làm được lần lượt số phần công việc là: \(\frac{1}{x},\frac{1}{y}\)công việc.

Theo bài ra ta có hệ phương trình: 

\(\hept{\begin{cases}4\left(\frac{1}{x}+\frac{1}{y}\right)=1\\3\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{3}{y}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{6}\\\frac{1}{y}=\frac{1}{12}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=12\end{cases}}\left(tm\right)\).

Giả sử nếu làm riêng thì người thứ nhất hoàn thành công việc trong x giờ, người thứ hai trong y giờ. Điều kiện x > 0, y > 0.

Trong 1 giờ người thứ nhất làm được 1/x công việc, người thứ hai 1/y công việc, cả hai người cùng làm chung thì được 1/8 công việc.

Ta được : \(\frac{1}{x}+\frac{1}{y}=\frac{1}{8}\)

Trong 3 giờ, người thứ nhất làm được 3/x công việc, trong 4 giờ người thứ hai làm được 4/y công việc, cả hai người làm được 4/5 công việc

Ta được\(\frac{3}{x}+\frac{4}{x}=\frac{4}{5}\)

Ta có hệ phương trình : \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{8}\\\frac{3}{x}+\frac{4}{x}=\frac{5}{4}\end{cases}}\)

Giải ra ta được x = \(\frac{35}{4}\), y = \(\frac{280}{3}\)

Vậy người thứ nhất 35/4 giờ, người thứ hai 280/3 giờ.

6 tháng 6 2021

đổi 2 giờ 40 phút=\(\dfrac{8}{3}\) giờ

gọi thời gian đội 1 và đội 2 làm riêng để hoàn thành công việc lần lượt là

x,y(x,y>\(\dfrac{8}{3}\) )

=>hệ pt: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\dfrac{8}{3}}=\dfrac{3}{8}\\y-x=4\end{matrix}\right.\) giải hệ pt trên ta được \(\left\{{}\begin{matrix}x=4\left(TM\right)\\y=8\left(TM\right)\end{matrix}\right.\)

vậy nếu làm riêng để hoàn thành công việc thì đội thứ nhất hết 4 giờ

đội thứ 2 hết 8 giờ

17 tháng 5 2022

TK:
1.

Gọi năng xuất làm việc trong 1 ngày của đội 1 và đội 2 lần lượt là:x và y(công việc/ngày).

2 đội công nhân cùng làm chung 1 công việc thì sau 15 ngày


15
×
y
+
15
×
y
=
1
(
1
)

Đội 1 làm riêng trong 3 ngày rồi dừng lại và đội 2 làm tiếp công việc đó trong 5 ngày thì cả 2 đội hoàn thành 25% công việc(ở đây mk đổi luôn)


3
×
x
+
5
×
y
=
1
4


5
×
(
3
×
x
+
5
×
y
)
=
5
×
1
4

15
×
x
+
25
×
y
=
5
4
(
2
)

Lấy (2) trừ đi (1) ta được:

(
15
×
x
+
25
×
y
)

(
15
×
x
+
15
×
y
)
=
5
4

1

10
×
y
=
1
4

y
=
1
4
:
10


y
=
1
40


x
=
1
24

Vậy .................

17 tháng 5 2022

Tham Khảo:
1.

Gọi năng xuất làm việc trong 1 ngày của đội 1 và đội 2 lần lượt là:x và y(công việc/ngày).

2 đội công nhân cùng làm chung 1 công việc thì sau 15 ngày

⇒15×y+15×y=1(1)⇒15×y+15×y=1(1)

Đội 1 làm riêng trong 3 ngày rồi dừng lại và đội 2 làm tiếp công việc đó trong 5 ngày thì cả 2 đội hoàn thành 25% công việc(ở đây mk đổi luôn)

⇒3×x+5×y=14⇒3×x+5×y=14

⇒5×(3×x+5×y)=5×14⇒5×(3×x+5×y)=5×14

15×x+25×y=54(2)15×x+25×y=54(2)

Lấy (2) trừ đi (1) ta được:

(15×x+25×y)−(15×x+15×y)=54−1(15×x+25×y)−(15×x+15×y)=54−1

10×y=1410×y=14

y=14:10y=14:10

⇒y=140⇒y=140

⇒x=124⇒x=124

Vậy .................

Gọi năng xuất làm việc trong 1 ngày của đội 1 và đội 2 lần lượt là:x và y(công việc/ngày).

2 đội công nhân cùng làm chung 1 công việc thì sau 15 ngày

\(\Rightarrow15\times y+15\times y=1\left(1\right)\)

Đội 1 làm riêng trong 3 ngày rồi dừng lại và đội 2 làm tiếp công việc đó trong 5 ngày thì cả 2 đội hoàn thành 25% công việc(ở đây mk đổi luôn)

\(\Rightarrow3\times x+5\times y=\frac{1}{4}\)

\(\Rightarrow5\times\left(3\times x+5\times y\right)=5\times\frac{1}{4}\)

\(15\times x+25\times y=\frac{5}{4}\left(2\right)\)

Lấy (2) trừ đi (1) ta được:

\(\left(15\times x+25\times y\right)-\left(15\times x+15\times y\right)=\frac{5}{4}-1\)

\(10\times y=\frac{1}{4}\)

\(y=\frac{1}{4}:10\)

\(\Rightarrow y=\frac{1}{40}\)

\(\Rightarrow x=\frac{1}{24}\)

Vậy .................

Chúc bạn học tốt

24 tháng 2 2019

Gọi x,y(h) lần lượt thời gian làm riêng xong cv của người 1 và 2(x,y>0)

Trong 1h người 1 làm được 1/x công việc

Trong 1h người 2 làm được 1/y công việc 

Trong 1h 2 người làm chung được 1/16 công việc 

Ta có pt1:  1/x   +   1/y  =   1/16

Trong 3h người 1 làm được 3/x công việc

Trong 6h người 2 làm được 6/y công việc

Ta có pt2:   3/x    +     6/y      =1/4

DONE

Hệ bạn tự giải nha

Bài giải:

Chiều rộng hình chữ nhật là:

        12 : 4 = 3 ( dm)

Chu vi mảnh tấm bìa đó  là:

        ( 12 + 3 ) x 2 = 30 ( dm)

                 Đáp số: 30dm.

5 tháng 4 2020

Đề nghị bạn Hồ Trần Mạnh Quỳnh không trả lời linh tinh