K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có OA =Oc ; OB = OD

=> TG ABCD là hình bình hành

Vì trong dấu hiệu nhận biết nói :

 TG có 2 dg thẳng cắt nhau tại trung diểm của mỗi đường thì là HBH

T nha mik thuộc lý thuyết lắm yên tâm

21 tháng 5 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: OA = OC (gt)

⇒ ∆ OAC cân tại O

⇒ ∠ A 1 = ( 180 0  - ∠ (AOC) ) / 2 (tính chất tam giác cân) (1)

OB = OD (gt)

⇒  ∆ OBD cân tại O

⇒  ∠ B 1 = ( 180 0  -  ∠ (BOD) )/2 (tính chất tam giác cân) (2)

∠ (AOC) =  ∠ (BOD) (đối đỉnh) (3)

Từ (1), (2), (3) suy ra:  ∠ A 1  =  ∠ B 1

⇒ AC // BD (vì có cặp góc ở vị tri so le trong bằng nhau)

Suy ra: Tứ giác ACBD là hình thang

Ta có: AB = OA + OB

CD = OC + OD

Mà OA = OC, OB = OD

Suy ra: AB = CD

Vậy hình thang ABCD là hình thang cân.

29 tháng 6 2017

Hình thang cân

23 tháng 8 2017

Có : AB cắt Cd tại O

       OA=OC,OB=OD

=> Tứ giác ABCD là hình thang

23 tháng 8 2017

Muốn chứng minh hình thang cân chứng minh:

- Hai cạnh bên bằng nhau

- Hai đường chéo bằng nhau

cần chứng minh AB và CD là 2 đường chéo và 2 góc tương ứng kề đáy

22 tháng 11 2016

Bố mày biết à

24 tháng 7 2017

hình thang cân

vì OA=OC

OD=OB

=>OA+OB=OC+OD

=>BA=CD

7 tháng 8 2021

Ta có: OA = OC (gt)

⇒ Δ∆OAC cân tại O

⇒∠A1∠A1= (18001800 - ∠∠(AOC) ) / 2 (tính chất tam giác cân) (1)

OB = OD (gt)

⇒ Δ∆OBD cân tại O

⇒ ∠B1∠B1= (18001800 - ∠∠(BOD) )/2 (tính chất tam giác cân) (2)

∠∠(AOC) = ∠∠(BOD) (đối đỉnh) (3)

Từ (1), (2), (3) suy ra: ∠A1∠A1 = ∠B1∠B1

⇒ AC // BD (vì có cặp góc ở vị tri so le trong bằng nhau)

Suy ra: Tứ giác ACBD là hình thang

Ta có: AB = OA + OB

CD = OC + OD

Mà OA = OC, OB = OD

Suy ra: AB = CD

Vậy hình thang ABCD là hình thang cân.

7 tháng 8 2021
14 tháng 10 2021

Ta có: OA = OC (gt)

⇒ ∆ OAC cân tại O

⇒ˆA1=1800–ˆAOC2⇒A^1=1800–AOC^2 (tính chất tam giác cân)   (1)

OB = OD (gt)

⇒ ∆ OBD cân tại O

⇒ˆB1=1800–ˆBOD2⇒B^1=1800–BOD^2 (tính chất tam giác cân)   (2)

ˆAOC=ˆBODAOC^=BOD^ (đối đỉnh)  (3)

Từ (1), (2) và (3) suy ra: ˆA1=ˆB1A^1=B^1

⇒ AC // BD (vì có cặp góc ở vị trí so le trong bằng nhau)

Suy ra: Tứ giác ACBD là hình thang

Ta có: AB = OA + OB

            CD = OC + OD

Mà OA = OC, OB = OD

Suy ra: AB = CD

Vậy hình thang ACBD là hình thang cân.

3 tháng 8 2016

A B C D 50

giả dụ ta có hình thang cân ABCD 

góc D=50o mà góc D= góc C

=> góc C= 500

Mà góc D + góc A=180o

=> góc A =180o-50o=130o

chứng minh tương tự ta cũng có góc B=1300

3 tháng 8 2016

O A B C D

Ta có : OA=OC;OB=OD

Theo dấu hiệu nhận biết số 5 thì tứ giác có 2 đường chéo cắt nhau tại tđ của mỗi đường là hình bình hành. 

VẬy tứ giác ABCD là hình bình hành