Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ta có:
đi từ A đến B:
\(\left(v_t+v_n\right)t_1=6\)
\(\Leftrightarrow v_t+v_n=6\left(1\right)\)
đi từ B về A:
\(\left(v_t-v_n\right)t_2=6\)
\(\Leftrightarrow1,5v_t-1,5v_n=6\left(2\right)\)
từ hai phương trình (1) và (2) ta có:
vt=5km/h
vn=1km/h
b)ta có:
muốn thời gian đi B về A trong 1h thì:
\(\left(v_t'-v_n\right)t=6\)
\(\Leftrightarrow v_t'-1=6\)
từ đó ta suy ra vt'=7km/h
-vận tốc của thuyền với nc là
- Vận tốc của nước với bờ là
Vxuôi.dòng =
Vngược.dòng =
=> >
<=> <
=> nước chảy theo chiều từ A->B
____________
b)
Vxuôi.dòng =
<=> =
<=> = 6 (1)
Vngược.dòng =
<=> =4 (2)
kết hợp (1) , (2) giải hệ pt => V1=5... V2=1
ta có: 12 phút = 0,2h
vận tốc thực tế của thuyền là:
v1=vt+vn=40km/h
thời gian đi dự định của thuyền là:
\(t=\frac{S}{v_1}=\frac{100}{40}=2,5h\)
thời gian xuồng đi hết đoạn đường đó là:
\(t_1=\frac{S}{v_1}+0,2=2,7h\)
\(=>120=2\left(Vt+Vn\right)=>2Vt+2Vn=120\left(1\right)\)
\(=>120=6\left(Vt-Vn\right)=>6Vt-6Vn=120\left(2\right)\)
(1)(2)=>hệ pt: \(\left\{{}\begin{matrix}2Vt+2Vn=120\\6Vt-6Vn=120\end{matrix}\right.=>\left\{{}\begin{matrix}Vt=40\\Vn=20\end{matrix}\right.\)
=>Vận tốc xuồng máy khi nước lặng là 40km/h
vạn tốc dòng nước là 20km/h
(nước chảy mạnh nhờ=))