\(\Delta\)\(ABC\) và \(\Delta MN...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABH và ΔACH có

AB=AC

\(\widehat{BAH}=\widehat{CAH}\)

AH chung

Do đó ΔABH=ΔACH

Suy ra: HB=HC

hay H là trung điểm của BC

b: TA có: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH là đường cao

c: Xét ΔADB và ΔBCA có 

AD=BC

\(\widehat{DAB}=\widehat{CBA}\)

BA chung

Do đó: ΔADB=ΔBCA

Xét tứ giác ADBC có

AD//BC

AD=BC

Do đó: ADBC là hình bình hành

Suy ra: AC//BD

26 tháng 1 2022

Bạn tự vẽ hình.

a, Ta có: \(ABC+\widehat{ACB}=90^o\Leftrightarrow\widehat{ACB}=60^o\)

Dễ dàng chứng minh \(\Delta BCD\) cân tại B

=> \(\Delta BCD\) đều

b, \(\Delta BCD\) => \(BD=DC=BC\)

AB là đường trung tuyến => \(AB=\frac{1}{2}DC\)

=> \(AB=\frac{1}{2}BC\)

10 tháng 5 2017

Nguyễn Huy TúAce Legonasoyeon_Tiểubàng giảiTrần Việt LinhHoàng Lê Bảo NgọcVõ Đông Anh TuấnPhương An

(ko vẽ hình và làm câu a,b,c cũng đc,chủ yếu là câu d mọi người giúp mk vs nhé)

11 tháng 5 2017

Xuân Tuấn TrịnhTuấn Anh Phan Nguyễn

1 tháng 12 2017

2 tháng 10 2019

a) Xét ΔABE và ΔHBE, có:

góc BAE = góc BHE = 90o (gt)

BE: chung

góc ABE = góc HBE ( BE là tia phân giác của góc ABC)

Vậy ΔABE = ΔHBE ( Cạnh huyền - góc nhọn)

b) Ta có: ΔABE = ΔHBE (cm câu a)

=> AB = HB ( 2 cạnh t/ư)

Vậy ΔABH là tam giác cân

c)Ta có: ΔABH cân tại B (cm câu b)

=> góc BAH = góc BHA ( 2 góc đáy của tam giác cân)

Mà: góc BAH = 65o (gt)

=> góc BHA = 65o

Do đó: góc ABH = 50o

Trong ΔABC, có:

góc A + góc B + góc C = 180o ( T/c tổng 3 góc của 1 tam giác)

Hay: 90o + 50o + góc C = 180o

góc C = 180o - 90o - 50o

=> góc C = 40o

Hay góc ACB = 40o (đpcm)

2 tháng 10 2019

Hình bạn tự vẽ nha!

a) Xét 2 \(\Delta\) vuông \(ABE\)\(HBE\) có:

\(\widehat{BAE}=\widehat{BHE}=90^0\)

\(\widehat{ABE}=\widehat{HBE}\) (vì \(BE\) là tia phân giác của \(\widehat{B}\))

Cạnh BE chung

=> \(\Delta ABE=\Delta HBE\) (cạnh huyền - góc nhọn)

b) Theo câu a) ta có \(\Delta ABE=\Delta HBE.\)

=> \(AB=HB\) (2 cạnh tương ứng)

=> \(\Delta ABH\) cân tại \(B.\)

Chúc bạn học tốt!

19 tháng 1 2017

Bài 1:

B A C I 12

\(\Delta\)ABC đều nên AB = AC = BC = 12 cm

\(\widehat{ABC}\) = \(\widehat{ACB}\) hay \(\widehat{ABI}\) = \(\widehat{ACI}\)

Xét \(\Delta\)ABI vuông tại I và \(\Delta\)ACI vuông tại I có:

AB = AC (c/m trên)

\(\widehat{ABI}\) = \(\widehat{ACI}\) (c/m trên)

=> \(\Delta\)ABI = \(\Delta\)ACI (ch - gn)

=> BI = CI (2 cạnh t/ư)

mà BI + CI = 12

=> BI = CI = \(\frac{12}{2}\) = 6

Áp dụng định lý pytago vào \(\Delta\)ABI vuông tại I có:

AB2 = AI2 + BI2

=> 122 = AI2 + 62

=> AI2 = 122 - 62

=> AI2 = 108

=> AI = \(\sqrt{108}\)

Vậy AI = \(\sqrt{108}\).

19 tháng 1 2017

Bài 1:

A B C I 1 2

Giải:

Vì t/g ABC đều nên AB = AC = BC = 12 cm

Xét \(\Delta AIB,\Delta AIC\) có:

\(AB=AC\) ( do t/g ABC đều )

\(\widehat{B}=\widehat{C}\) ( do t/g ABC đều )

\(\widehat{I_1}=\widehat{I_2}=90^o\)

\(\Rightarrow\Delta AIB=\Delta AIC\)( c.huyền - g.nhọn )

\(\Rightarrow IB=IC\) ( cạnh t/ứng )

\(BC=12\left(cm\right)\)

\(\Rightarrow IB=IC=6cm\)

Trong t/g AIB, áp dụng định lí Py-ta-go có:

\(BI^2+AI^2=AB^2\)

\(\Rightarrow6^2+AI^2=12^2\)

\(\Rightarrow AI^2=108\)

\(\Rightarrow AI=\sqrt{108}\left(cm\right)\)

Vậy \(AI=\sqrt{108}cm\)

26 tháng 4 2017

A B C E M

a) Xét hai tam giác vuông ABM và ECM có:

MB = MC (gt)

MA = ME (gt)

Vậy: \(\Delta ABM=\Delta ECM\left(ch-cgv\right)\)

b) Vì \(\Delta ABM=\Delta ECM\left(cmt\right)\)

Suy ra: \(\widehat{ABM=\widehat{BCE}}\) ( hai góc tương ứng)

\(\widehat{ABM=90^o}\)

Nên \(\widehat{BCE=90^o}\) hay EC \(\perp\) AB

c) Vì \(\Delta ABC\) vuông tại B

nên \(\widehat{ABC>\widehat{ACB}}\) (vì \(\widehat{ABC=90^o}\))

\(\Rightarrow\) AC > AB (quan hệ giữa góc và cạnh đối diện trong tam giác)

Mà AB = CE (\(\Delta ABM=\Delta ECM\))

Do đó: AC > CE

d) Ta có: \(\widehat{BAE=\widehat{AEC}}\) (\(\Delta ABM=\Delta ECM\))

Mà hai góc này ở vị trí so le trong

Vậy: BE // AC.