K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

ta có: góc ACD= góc ABD (vì cùng chắn cung AD nhỏ)

xét tam giác ACG và tam giác DBG có:

góc AGC =góc DGB (2 góc đối đỉnh)

góc ACG= góc DBG (cmt)

=> tam giác AGC ~ tam giác DGB(g-g)

=>\(\frac{AG}{AC}=\frac{DG}{DB}\) \(\Rightarrow\frac{AG}{DG}=\frac{CG}{BG}\)(1)

ta có GM là phân giác góc AGD => \(\frac{AG}{GD}=\frac{AM}{MD}\left(2\right)\)

Ta có: góc CGB = góc AGD (2 góc đối đỉnh)

mà MN là phân giác góc AGD

=> MN là phân giác gócCGB

hay GN là phân giác góc CGB

=> \(\frac{CG}{BG}=\frac{CN}{BN}\)(3)

từ (1);(2) và (3) ta có \(\frac{AM}{MD}=\frac{CN}{NB}\left(đpcm\right)\)

24 tháng 1 2019

A B C O D E N P

Xét đường tròn (O) có 2 tiếp tuyến NE, NC (E và C là tiếp điểm) => EN = CN (T/c 2 tiếp tuyến giao nhau)

Ta thấy: ^BAC nội tiếp (O), phân giác ^BAC cắt (O) tại điểm thứ hai E => E là điểm chính giữa cung nhỏ BC

=> OE vuông góc với BC. Mà EN vuông góc OE nên EN // BC. Áp dụng ĐL Thales có:

\(\frac{CN}{CD}=\frac{EN}{CD}=\frac{PN}{CP}\)=> \(\frac{CN}{CD}+\frac{CN}{CP}=\frac{PN+CN}{CP}=1\)=> \(\frac{1}{CN}=\frac{1}{CD}+\frac{1}{CP}\)(đpcm).

22 tháng 11 2017

A B D C M N H O I E F G K J

a) Xét tam giác ADC có MH//AC nên \(\frac{AM}{MD}=\frac{CH}{HD}\) (Định lý Ta-let)

Lại có theo giả thiết \(\frac{AM}{MD}=\frac{CN}{BN}\)

Suy ra \(\frac{CN}{BN}=\frac{CH}{DH}\)

Xét tam giác DBC có \(\frac{CN}{BN}=\frac{CH}{DH}\) nên áp dụng định lý đảo của định lý Talet ta có HN//BD

b) Gọi giao điểm của MH với BD là G; của AC với NH là K, của OH với GK là J.

Trước hết, ta chứng minh GK//MN. 

Thật vậy, do HM // AC nên theo định lý Ta let ta có \(\frac{MG}{GH}=\frac{AO}{OC}\) 

Do HN//BD (cma) nên \(\frac{KN}{KH}=\frac{OB}{OD}\)

Mà \(\frac{OB}{OD}=\frac{AO}{OC}\Rightarrow\frac{MG}{GH}=\frac{KN}{KH}\)

Theo định lý Ta lét đảo, suy ra GK//MN.

Xét tứ giác OGHK có GO//HK; GH//OK nên OGHK là hình bình hành

Vậy thì J là trung điểm của EK.

Xét tam giác OGK có EF // GK nên ta có :

\(\frac{EI}{GJ}=\frac{FI}{KJ}\Rightarrow\frac{EI}{GJ}=\frac{FI}{GJ}\Rightarrow EI=FI\)

Ta cũng có GK//MN nên :

\(\frac{GJ}{MI}=\frac{KJ}{IN}\Rightarrow MI=NI\Rightarrow ME=NF\)

2 tháng 12 2017

giúp em vs CMR với mọi a,b,c ta có (a^2+2)(b^2+2)(c^2+2)>= 3(a+b+c)^2

8 tháng 7 2021

O A B D E C H P F N M I

a) Ta có \(\sin\widehat{OAB}=\frac{OB}{OA}=\frac{1}{2}\). Suy ra \(\widehat{BAC}=2\widehat{OAB}=60^0\)

Vì AB = AC nên \(\Delta ABC\) đều. Vậy \(BC=AB=OB\sqrt{3}=R\sqrt{3}\)

Gọi I là tiếp điểm của FN với (O). Ta có:

\(\widehat{MON}=\widehat{IOM}+\widehat{ION}=\frac{1}{2}\left(\widehat{IOB}+\widehat{IOC}\right)=\frac{1}{2}\widehat{BOC}=60^0=\widehat{MCN}\)

Suy ra tứ giác MNCO nội tiếp.

b) Theo hệ thức lượng: \(\overline{AH}.\overline{AO}=AB^2=\overline{AD}.\overline{AE}\). Suy ra tứ giác DHOE nội tiếp

Ta thấy \(OD=OE,HO\perp HB\), do đó HO,BC là phân giác ngoài và phân giác trong \(\widehat{DHE}\)

Dễ thấy D và P đối xứng nhau qua OA vì dây cung \(DP\perp OA\)

Vì \(\widehat{DHE}+\widehat{DHP}=2\left(\widehat{DHB}+\widehat{DHA}\right)=180^0\) nên P,H,E thẳng hàng.

c) Do N,O,E thẳng hàng nên \(\widehat{DOE}=180^0-\widehat{MON}=120^0\). Suy ra \(DE=R\sqrt{3}\)

Theo hệ thức lượng thì:

\(AD.AE=AB^2\Rightarrow AD^2+AD.DE=AB^2\)

\(\Rightarrow\left(\frac{AD}{DE}\right)^2+\frac{AD}{DE}-\left(\frac{AB}{DE}\right)^2=0\)

\(\Rightarrow\left(\frac{AD}{DE}\right)^2+\frac{AD}{DE}-1=0\) vì \(AB=DE=R\sqrt{3}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{AD}{DE}=\frac{-1+\sqrt{5}}{2}\left(c\right)\\\frac{AD}{DE}=\frac{-1-\sqrt{5}}{2}\left(l\right)\end{cases}}\) vì \(\frac{AD}{DE}>0\)

\(\Rightarrow\frac{AD}{AE}=\frac{\sqrt{5}-1}{\sqrt{5}+1}=\frac{3-\sqrt{5}}{2}.\)