K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Trong tứ giác AOBM có = = .

Suy ra cung AMB + =

=> cung AMB= -

= -

=

b) Từ = . Suy ra số đo cung nhỏ AB = và số đo cung lớn AB :

Cung AB = - =



24 tháng 9 2019

O C F A E B M P Q 1

+) Bước 1: Chứng minh \(\Delta\) FPO vuông tại P

Ta có: \(\widehat{O_1}=\widehat{FOP}=\widehat{FOE}=\widehat{FOM}+\widehat{MOE}=\frac{1}{2}\widehat{COM}+\frac{1}{2}\widehat{MOB}=\frac{1}{2}\widehat{BOC}\)

=> \(\widehat{FOP}=\frac{1}{2}\widehat{BOC}\)

mà \(\widehat{FCP}=\widehat{FCB}=\frac{1}{2}\widehat{BOC}\) ( góc nội tiếp = 1/2 góc ở tâm khi chắn cùng một cung)

=> \(\widehat{FOP}=\widehat{FCP}\)

=> Tứ giác CFPO nội tiếp  => \(\widehat{FPO}+\widehat{FCO}=180^o\Rightarrow\widehat{FPO}=180^o-90^o=90^o\)

=>  \(\Delta\) FPO vuông tại P

+) Bước 2: Chứng minh  \(\Delta\) EQO vuông tại Q. ( Chứng minh tương tự)

+) Bước 3: Chứng minh tỉ số: \(\frac{PQ}{EF}=\frac{OQ}{OE}\)

Xét  \(\Delta\) FPO vuông tại P và  \(\Delta\) EQO vuông tại Q có: \(\widehat{O_1}\) chung 

=>  \(\Delta\) FPO  ~  \(\Delta\) EQO

=> \(\frac{OQ}{OE}=\frac{OP}{OF}\)

Xét  \(\Delta\) OQP và  \(\Delta\) OEF  có: \(\frac{OQ}{OE}=\frac{OP}{OF}\)( chứng minh trên ) và \(\widehat{O_1}\) chung

=>  \(\Delta\) OQP ~  \(\Delta\) OEF

=> \(\frac{PQ}{EF}=\frac{OQ}{OE}\)(1) 

+) Bước 4: Chứng minh Tỉ số \(\frac{PQ}{EF}\)không đổi khi M di chuyển trên cung nhỏ BC

Xét \(\Delta\)EQO vuông tại Q  => \(\cos\widehat{O_1}=\frac{OQ}{OE}\)

Mặt khác : \(\widehat{O_1}=\frac{1}{2}\widehat{BOC}\) ( xem chứng minh ở Bước 1) 

=> \(\cos\frac{1}{2}.\widehat{BOC}=\frac{OQ}{OE}\) (2)

Từ (1) ; (2) => \(\frac{PQ}{EF}=\cos\frac{1}{2}.\widehat{BOC}\)không đổi  khi M di chuyển. ::))

5 tháng 2 2018

+) Có A,B thuộc đường tròn (O;R) 

=> OA = OB = R Mà AB = R

=> OA = OB = AB => tam giác AOB đều ( định nghĩa tam giác đều)

=> góc AOB = 60 độ ( tính chất tam giác đều)

Trong đường tròn (O;R) có góc AOB là góc ở tâm chắn cung AB nhỏ 

=> số đo cung AB nhỏ = góc AOB = 60 độ (tính chất góc ở tâm )

+) Có B,C thuộc đường tròn (O;R) => OB=OC=R

Có OB^2 + OC^2 = R^2 + R^2= 2*R^2 = BC^2 ( vì BC = R\(\sqrt{2}\) )

=> tam giác BOC vuông ở O ( định lý Py-ta-go đảo )

=> góc BOC = 90 độ

Trong đường tròn (O;R) có góc BOC là góc ở tâm chắn cung BC nhỏ 

=> góc BOC = số đo cung BC nhỏ ( tính chất góc ở tâm) => số đo cung BC nhỏ = 90 độ

+) Vì tia BO nằm giữa 2 tia BA và BC nên B nằm giữa A và C

=> số đo cung AB nhỏ + số đo cung BC nhỏ = số đo cung AC nhỏ

=> số đo cung AC nhỏ = 60 độ + 90 độ = 150 độ

k cho mk nha !!!!!!!!!!!

11 tháng 4 2017

a) Ta có là góc có đỉnh ở bên ngoài đường tròn nên:

\(\widehat{AEB}=\dfrac{sđ\left(\widehat{AB}-\widehat{CD}\right)}{2}=\dfrac{180^O-60^O}{2}=60^O\)

\(\widehat{BTC}\) cũng là góc có đỉnh ở bên ngoài đường tròn ( hai cạnh đều là tiếp tuyến của đường tròn) nên:

\(\widehat{BTC}\) = sđ\(\dfrac{\widehat{BAC}-\widehat{BDC}}{2}=\dfrac{\left(180^O+60^O\right)-\left(60^O+60^O\right)}{2}=60^O\)

Vậy =

b) \(\widehat{DCT}\) là góc tạo bởi tiếp tuyến và dây cung nên:

\(\widehat{DCT}=\dfrac{sđ\widehat{CD}}{2}=\dfrac{60^o}{2}=30^o\)

\(\widehat{DCB}\) là góc nội tiếp trên

\(\widehat{DCB}\) = \(\dfrac{sđ\widehat{DB}}{2}\) = \(\dfrac{60^O}{2}=30^O\)

Vậy \(\widehat{DCT}\) = \(\widehat{DCB}\) hay CD là phân giác của \(\widehat{BCT}\)

13 tháng 9 2018

Tại sao phải chứng minh khi nhìn vào đã biết

a: góc AOC; góc BOD; góc AOD; góc BOC

b: góc COB=góc AOD=60 độ

=>sđ cung BC=60 đọ

góc AOC=180-60=120 độ

=>sđ cung AC=120 độ

c: sđ cung AC>sđ cung AD

=>AD>AC

a) Điểm C nằm trên cung nhỏ AB ( hình a)

Số đo cung nhỏ BC = 100º – 45º = 55º

Số đo cung lớn BC = 360º – 55º = 305º

b) Điểm C nằm trên cung lớn AB (hình b)

Số đo cung nhỏ BC = 100º + 45º = 145º

Số đo cung lớn BC = 360º – 145º = 215º