K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

bài này mấy đứa ôn lí 11 cug đc hokn mà

7 tháng 10 2018

\(\dfrac{W_a}{W_b}=\dfrac{\dfrac{1}{2}m.v_1max^2}{\dfrac{1}{2}m.v_2max^2}=\dfrac{g.l_1.\alpha o1^2}{g.l_2.\alpha o^2}\)

dao động nhỏ nên anpha xấp xỉ sin anpha
B là 2
A là 1

tỉ số cơ năng là....

6 tháng 8 2016

Áp dụng công thức tính năng lượng dao động của con lắc đơn ta có:
\(W_1 = \dfrac{1}{2}.m_1.g.\ell_1. \alpha_1 ^{2}\)\(W_2 = \dfrac{1}{2}.m_2.g.\ell_2. \alpha_2 ^{2}\)
Theo giả thiết hai con lắc đơn có cùng năng lượng

\(\Rightarrow \dfrac{1}{2}.m_1.g.\ell_1. \alpha_1 ^{2}=\dfrac{1}{2}.m_2.g.\ell_2. \alpha_2 ^{2}\)
Do khối lượng hai con lắc bằng nhau nên:

\(\ell_1.\alpha_1 ^{2} = \ell_2. \alpha_2 ^{2}\)

\(\Rightarrow \alpha_2 = \alpha_1 .\sqrt{l1/l2}\).

Thay số ta tìm được: \(\alpha_2 = 5,625^0\)

7 tháng 8 2016

Thanks nhìu

11 tháng 4 2017

Áp dụng công thức (5.1 và 5.2 - SGK) ta tìm được:

A = 2,3 cm và φ = 0,73π

Phương trình dao động tổng hợp là: x = 2,3cos(5πt + 0,73π) (cm).


1 tháng 6 2016
Đáp án đúng: A
 

Chọn gốc thế năng tại VT dây thẳng đứng.
Áp dụng định luật bảo toàn năng lượng ta có:
\(W=mgl\left(1-\cos\alpha_0\right)=W_d+W_t=W_d+mgl\left(1-\cos\alpha\right)\)
\(\Rightarrow W_d=mgl\left(1-\cos\alpha_0-1+\cos\alpha\right)=mgl\left(\frac{\alpha^2_0}{2}-\frac{\alpha^2}{2}\right)\)
\(=0,1.10.0,8.\left(\frac{\left(\frac{8}{180}\pi\right)^2-\left(\frac{4}{180}\pi\right)^2}{2}\right)\approx5,84\left(mJ\right)\)

Con lắc đơn gồm 1 dây kim loại nhẹ có đầu trên cố định, đầu dưới treo một vật nhỏ. chiều dài của dây treo là 20cmcon lắc dao động điều hòa với anpha0=0,15 rad. Con lắc dao động trong từ trường đều, vecto cảm ứng từ B vuônggóc với mặt phẳng dao động của con lắc. B= 0,5T, g=9,8 m/s2. Suất điện động cực đại xuất hiện trên dây kim loại là:A. 17 mV                        B. 21mV  ...
Đọc tiếp

Con lắc đơn gồm 1 dây kim loại nhẹ có đầu trên cố định, đầu dưới treo một vật nhỏ. chiều dài của dây treo là 20cm

con lắc dao động điều hòa với anpha0=0,15 rad. Con lắc dao động trong từ trường đều, vecto cảm ứng từ B vuông

góc với mặt phẳng dao động của con lắc. B= 0,5T, g=9,8 m/s2. Suất điện động cực đại xuất hiện trên dây kim loại là:

A. 17 mV                        B. 21mV                    C. 8,5 mV                         D. 10,5 mV

-trong sách giải có trình bày như này ạ: 

              Suất điện động trên dây kim loại:  e= Blvsin\(\alpha\)  với anpha (B,v) = 90 độ 

               vmax = \(\sqrt{gl}\alpha_0\) = 0,21 m/s 

               suy ra emax = Blvmax = 0,021 V

-em tham khảo trên mạng dạng bài tương tự thì thấy có ghi

      e=\(\frac{Bl^2w}{2}\)

     emax khi wmax            suy ra     wmax=\(\frac{v_{max}}{R}=\frac{\sqrt{2gl\left(1-cos\alpha_0\right)}}{l}\)      thay số tính ra e = 10,5 mV

Vậy cách làm nào mới đúng vậy thầy.

1
31 tháng 5 2016

Cách thứ 2 mới đúng em nhé. 

Cách 1 chỉ đúng khi dây kim loại chuyển động tịnh tiến, nhưng ở đây là dây kim loại quay quanh 1 đầu cố định.

Mình giải thích thêm về công thức trên như sau.

Ta có suất điện đọng tính bởi :

\(e=\dfrac{\Delta\phi}{\Delta t}=\dfrac{B.\Delta S}{\Delta t}=\dfrac{B.\Delta (\dfrac{\alpha}{2\pi}.\pi^2.l )}{\Delta t}=\dfrac{B.\Delta\alpha.l^{2}}{2.\Delta t}=\dfrac{B.l^{2}\omega}{2}\)

Với \(\Delta \alpha\) là góc quay trong thời gian \(\Delta t\) \(\Rightarrow \omega = \dfrac{\Delta \alpha}{\Delta t}\)

\(e_{max}\) khi \(\omega_{max}\), với  \(\omega_{max}=\dfrac{v_{max}}{R}=\dfrac{\sqrt{2gl(1-\cos\alpha)}}{l}\)

Thay vào trên ta tìm đc \(e_{max}\)

20 tháng 9 2020

1/ Công thức cần nhớ: \(T=2\pi\sqrt{\frac{l}{g}}\)

\(\Rightarrow T_1=2\pi\sqrt{\frac{l_1}{g}}=\frac{2\pi}{\omega_1}\Leftrightarrow\omega_1^2=\frac{g}{l_1}\Leftrightarrow l_1=\frac{g}{36}\)

\(\Rightarrow T_2=2\pi\sqrt{\frac{l_2}{g}}=\frac{2\pi}{\omega_2}\Leftrightarrow\omega_2^2=\frac{g}{l_2}\Leftrightarrow l_2=\frac{g}{64}\)

\(l=\frac{l_1l_2}{l_1+l_2}\Rightarrow T=2\pi\sqrt{\frac{l}{g}}=\frac{2\pi}{\omega}\)

\(\Rightarrow\omega^2=\frac{g}{l}=\frac{g\left(l_1+l_2\right)}{l_1l_2}=\frac{g\left(\frac{g}{36}+\frac{g}{64}\right)}{\frac{g}{36}.\frac{g}{64}}=\frac{\frac{25}{576}g^2}{\frac{g^2}{2304}}=100\Rightarrow\omega=10rad/s\)

2/ \(\Delta t_1=\frac{1}{\omega}arc\sin\left(\frac{4}{5}\right)=...\)

\(\Delta t_2=\frac{1}{\omega}arc\sin\left(\frac{3}{5}\right)=...\)

\(\sum t=\Delta t_1+\Delta t_2=...\)

26 tháng 10 2016

mk nghĩ làm bài này như sau:

Ta có:\(\begin{cases}T1=2\pi\sqrt{\frac{l1}{g}}\\T2=2\pi\sqrt{\frac{l2}{g}}\end{cases}\)\(\Rightarrow\sqrt{\frac{l1.l2}{g^2}}=\frac{T1.T2}{\left(2\pi\right)^2}\)\(\Rightarrow\frac{1}{\sqrt{g}}.\sqrt{\frac{l1.l2}{g}}=\frac{T1.T2}{\left(2\pi\right)^2}\)

\(\Rightarrow\) \(T3=2\pi\sqrt{\frac{l1.l2}{g}}=\frac{\sqrt{g}}{2\pi}T1.T2\)

Chọn C

26 tháng 10 2016

thank bạn nha