K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2019

Đáp án : A

- Gọi m 1  ; m 2  là lượng nước có trong bình 1, bình 2 lúc ban đầu.

- Khi đổ một lượng nước 0,05(kg) từ bình 2 sang bình 1. nước ở bình 1 có nhiệt độ cân bằng là 35 0 C .

- Ta có:

    m 1 .c.(35 - 30) = 0,05.c.(60 - 35)

- Hay:

    m 1 .5 = 0,05.25 ⇒  m 1  = 0,25 (kg)

- Sau khi đổ 0,05 (kg) từ bình 1 sang bình 2 thì nhiệt độ ở bình 2 sau khi cân bằng là 50 0 C ta lại có:

   ( m 2  – 0,05).c.(60 - 50) = 0,05.c(50 - 35)

   ⇒( m 2  – 0,05).10 = 0,05.15 ⇒  m 2  = 0,125 (kg)

26 tháng 8 2016

Đổi: \(500g=0,5kg,50g=0,05kg\)

Nhiệt lượng nước thu vào để đạt đến \(55^0C\) là :

\(Q_{thu}=m_n.c_n.\Delta t=94500\left(J\right)\)

Giả sử ta đổ cùng một lúc một khối nước có khối lượng gồm n cốc vào bình.

\(\Rightarrow\) Khối lượng khối nước đó là : \(m=n.0,05\)

\(\Rightarrow\)Nhiệt lượng mà khối nước tỏa ra là: \(Q=m.c_n.\Delta t=n.0,05.4200.5=1050.n\left(J\right)\)

\(\Rightarrow1050.n=94500\)

\(\Rightarrow n=90\)

Vậy ta cần đổ - múc tối thiểu 90 lượt thì sẽ được nước có yêu cầu như đề bài!!

26 tháng 1 2018

Đâu phải nhiệt toả ra của mỗi cốc nước nước luôn bằng nhau trong mỗi lượt đâu mà bạn chia

26 tháng 8 2016

Gọi t lả nhiệt độ sau lần 1.
Khi đổ lượng nước m vào bình 1 ta có pt:
Qthu=Qtoả
m.c.(40-t)= 4.c.(t-20)
<=> 40m-mt=4t-80 (1)
Khi đổ m lại bình 2 ta có pt:
Qthu=Qtoả
(8-m).c.(40-38)= m.c.(38-t)
16-2m= 38m-mt
<=> 16= 40m-mt (2)
Từ (1),(2):
=>4t-80= 16
=> t= 24.
Vậy nhiệt độ sau cân bằng 1 là 24 độ C.
Lượng nước m là:
16=40m-24m= 16m
=> m= 1 (kg)

18 tháng 7 2021

THAM KHẢO!

undefined

18 tháng 7 2021

Còn nhiều người làm được bài này, không khiến bạn copy rồi ghi tham khảo nhé!

Muốn ghi tham khảo qua box Xã Hội chơi ;)

5 tháng 9 2016

Khi trút một lượng nước m từ B1 sang B2 thì m kg nước tỏa nhiệt để hạ nhiệt độ từ t1 (t độ đó) xuống t3, m2 kg nước thu nhiệt để tăng nhiệt độ từ t2 đến t3. 
Do nhiệt hao phí không đáng kể ( câu này phải lập luận) có phương trình cân bằng nhiệt 
Qtỏa = Qthu 
<=> m(t1 - t3) = m2(t3 - t2) (đã rút gọn Cn) 
<=> m(40- t3) = 1( t3-20) 
<=> m= (t3-20)/(40-t3) (*) 
Lúc này ở B1 còn (m1-m) kg nước có nhiệt độ t1=40, ở B2 có ( m2+m) kg nước có nhiệt độ t3 
Khi trút một lượng nước m từ B2 về B1 thì (m1-m) kg nước tỏa nhiệt để hạ nhiệt độ từ t1 xuống 38 độ, m kg nước thu nhiệt để tăng nhiệt độ từ t3 lên 38 độ. 
(lập luận như trên) có phương trình cần bằng nhiệt 
Qtỏa = Q thu 
<=>(m1-m)(t1-38) = m(38 - t3) 
<=>(2-m)2 = m(38-t3) 
<=>4-2m = m(38-t3) 
<=>m(38 -t3 +2) =4 
<=>m= 4/(40 -t3) (~) 

Từ (*) và (~) ta có 
t3 -20 = 4 
<=>t3 = 24 
Suy ra nhiệt độ cân bằng ở bình 2 là 24 độ 
Thay t3 = 24 độ vào một trong hai phương trình trên sẽ tìm được m = 0.25 kg

5 tháng 9 2016

Xét cả quá trình :

Nhiệt lượn bình 1 tỏa ra :

\(Q=m_1.C.2=16800J\)

Nhiệt lượng này truyền cho bình 2.

\(Q=m_2.C.\left(t-20\right)\)

Xét lần trút từ bình 1 sang bình 2.

\(mC\left(40-24\right)=m_2C\left(24-20\right)\)

Tính được \(0,66666kg\)

18 tháng 4 2022

Gọi nhiệt độ bình thứ nhất sau khi đã cân bằng là \(t_1^oC\).

Phương trình cân bằng nhiệt sau khi rót lần thứ nhất:

\(m\cdot C\cdot\left(40-t_1\right)=3\cdot C\cdot\left(t_1-20\right)J\)

Phương trình cân bằng nhiệt sau khi rót lần thứ hai:

\(\left(4-m\right)C\cdot\left(38-40\right)=m\cdot C\cdot\left(t_1-38\right)J\)

\(\Rightarrow\left\{{}\begin{matrix}m\cdot\left(40-t_1\right)=3\left(t_1-20\right)\\\left(4-m\right)\cdot\left(38-40\right)=m\cdot\left(t_1-38\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}40m-mt_1=3t_1-60\\2m-8=mt_1-38m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}40m=mt_1+3t_1-60\\40m=8+mt_1\end{matrix}\right.\)

\(\Rightarrow mt_1+3t_1-60=8+mt_1\Rightarrow t_1=22,67^oC\)

\(\Rightarrow m=\dfrac{3\left(t_1-20\right)}{40-t_1}=\dfrac{3\left(22,67-20\right)}{40-22,67}=0,4622kg=462,2g\)