Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi thời gian A, B làm một mình xong công việc lần lượt là x, y (y > x > 6, đơn vị: ngày)
Mỗi ngày các bạn A, B lầm lượt làm được 1 x và 1 y (công việc)
Vì hai bạn A và B cùng làm chung một công việc thì hoàn thành sau 6 ngày nên ta có: 1 x + 1 y = 1 6 (1)
Do làm một mình xong công việc thì B làm lâu hơn A là 9 ngày nên ta có phương trình: y – x = 9 (2)
Từ (1) và (2) ta có hệ phương trình:
1 x + 1 y = 1 6 y − x = 9 ⇒ x = 9 y = 18 (thỏa mãn)
Vậy B hoàn thành cả công việc trong 18 ngày.
Suy ra sau khi A làm một mình xong nửa công việc rồi nghỉ, B hoàn thành công việc còn lại trong 9 ngày.
Đáp án: A

Gọi thời gian A, B làm một mình xong công việc lần lượt là x, y (y > x > 0; y > 12, đơn vị: ngày)
Mỗi ngày các bạn A, B lầm lượt làm được 1 x và 1 y (công việc)
Vì hai bạn A và B cùng làm chung một công việc thì hoàn thành sau 8 ngày nên ta có: 1 x + 1 y = 1 8 (1)
Do làm một mình xong công việc thì B làm lâu hơn A là 12 ngày nên ta có phương trình: y – x = 12 (2)
Từ (1) và (2) ta có hệ phương trình 1 x + 1 y = 1 8 y − x = 12 ⇒ y = x + 12 1 x + 1 x + 12 = 1 8 ( * )
Giải (*):
1 x + 1 x + 12 = 1 8 ⇔ 8 x + 12 + 8 x 8 x x + 12 = x x + 12 8 x x + 12 ⇒ 16 x + 96 = x 2 + 12 x
x 2 – 4 x – 96 = 0 ⇔ x 2 + 8 x – 12 x – 96 = 0 ⇔ x ( x + 8 ) – 12 ( x + 8 ) = 0
⇔ ( x – 12 ) ( x + 8 ) = 0 ⇔ x = 12 ( N ) x = − 8 ( L )
Với x = 12 ⇒ y = x + 12 = 24
Vậy B hoàn thành cả công việc trong 24 ngày
Suy ra sau khi A làm một mình xong 1 3 công việc rồi nghỉ, B hoàn thành 2 3 công việc cong lại trong 2 3 .24 = 16 ngày.
Đáp án: A
Gọi thời gian A, B làm một mình xong công việc lần lượt là x, y (y > x > 6, đơn vị: ngày)
Mỗi ngày các bạn A, B lầm lượt làm được 1 x và 1 y (công việc)
Vì hai bạn A và B cùng làm chung một công việc thì hoàn thành sau 6 ngày nên ta có: 1 x + 1 y = 1 6 (1)
Do làm một mình xong công việc thì B làm lâu hơn A là 9 ngày nên ta có phương trình: y – x = 9 (2)
Từ (1) và (2) ta có hệ phương trình:
1 x + 1 y = 1 6 y − x = 9 ⇒ x = 9 y = 18 (thỏa mãn)
Vậy B hoàn thành cả công việc trong 18 ngày.
Suy ra sau khi A làm một mình xong nửa công việc rồi nghỉ, B hoàn thành công việc còn lại trong 9 ngày

a) Gọi x(ngày) và y(ngày) lần lượt là số ngày mà người thợ thứ nhất và người thợ thứ hai làm xong công việc khi làm một mình(Điều kiện: x>6 và y>6)
Trong 1 ngày, người thợ thứ nhất làm được:
\(\dfrac{1}{x}\)(công việc)
Trong 1 ngày, người thợ thứ hai làm được:
\(\dfrac{1}{y}\)(công việc)
Trong 1 ngày, hai người thợ làm được:
\(\dfrac{1}{6}\)(công việc)
Từ đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)(1)
Vì khi làm một mình thì người thứ hai cần nhiều thời gian hoàn thành hơn người thứ nhất 9 ngày nên ta có phương trình:
x+9=y(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\x+9=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{x+9}=\dfrac{1}{6}\\x+9=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+9+x}{x\left(x+9\right)}=\dfrac{1}{6}\\x+9=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6\left(2x+9\right)=x\left(x+9\right)\\x+9=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}12x+54=x^2+9x\\x+9=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-3x-54=0\\x+9=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-9x+6x-54=0\\x+9=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(x-9\right)+6\left(x-9\right)=0\\x+9=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-9\right)\left(x+6\right)=0\\x+9=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-9=0\\x+6=0\end{matrix}\right.\\y=x+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=9\left(nhận\right)\\x=-6\left(loại\right)\end{matrix}\right.\\y=x+9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=9\\y=9+9=18\left(nhận\right)\end{matrix}\right.\)
Vậy: Người thứ nhất cần 9 ngày để hoàn thành công việc khi làm một mình
Người thứ hai cần 18 ngày để hoàn thành công việc khi làm một mình

Gọi thời gian đội 1 và đội 2 hoàn thành công việc một mình lần lượt là x(ngày), y( ngày)(x,y>12)
Mỗi ngày đội 1 làm được phẫn việc là 1/x
Đội 2 làm được số phần việc là 1/y
cả hai đội làm được số phần việc là 1/12
ta có phương trình: 1/x+1/y=1/12(1)
Đội 1 làm trong 5 ngày rồi nghỉ, dội 2 làm tiếp 15 ngày thì họ làm được 75%công việc
từ đó ta có phương trình: 5/x+15/y=3/4(2)
Từ (1)(2) ta có hệ phương trình:{1/x+1/y=1/12; 5/x+15/y=3/4
Giải hệ pt ta tìm được x=20; y=30
KL:Nếu làm một mình thì đội thứ nhất hoàn thành công việc trong 20 ngày, đội thứ hai hoàn thành công việc trong 30 ngày.
Bước 1. Gọi năng suất làm việc của A và B
⇒ Mỗi ngày A làm được \(\frac{1}{a}\) công việc.
⇒ Mỗi ngày B làm được \(\frac{1}{b}\) công việc.
Bước 2. Thiết lập quan hệ
\(\frac{1}{a} + \frac{1}{b} = \frac{1}{6} .\)
\(b = a + 9.\)
Bước 3. Giải hệ
Thay \(b = a + 9\):
\(\frac{1}{a} + \frac{1}{a + 9} = \frac{1}{6} .\)
Quy đồng:
\(\frac{\left(\right. a + 9 \left.\right) + a}{a \left(\right. a + 9 \left.\right)} = \frac{1}{6} .\) \(\frac{2 a + 9}{a^{2} + 9 a} = \frac{1}{6} .\)
Nhân chéo:
\(6 \left(\right. 2 a + 9 \left.\right) = a^{2} + 9 a .\) \(12 a + 54 = a^{2} + 9 a .\) \(a^{2} - 3 a - 54 = 0.\)
Giải phương trình bậc hai:
\(\Delta = \left(\right. - 3 \left.\right)^{2} - 4 \cdot 1 \cdot \left(\right. - 54 \left.\right) = 9 + 216 = 225.\) \(a = \frac{3 \pm 15}{2} .\)
⇒ A làm một mình: 9 ngày.
⇒ B làm một mình: \(b = 9 + 9 = 18\) ngày.
Bước 4. Tính phần việc A làm trong 3 ngày
A làm trong 9 ngày xong việc, nên trong 3 ngày A làm được:
\(\frac{3}{9} = \frac{1}{3} .\)
⇒ Còn lại \(\frac{2}{3}\) công việc.
Bước 5. B làm nốt
B làm 1 công việc trong 18 ngày, tức mỗi ngày \(\frac{1}{18}\).
Để làm \(\frac{2}{3}\):
\(\frac{2}{3} \div \frac{1}{18} = \frac{2}{3} \times 18 = 12.\)
✅ Kết quả: Nếu A làm 3 ngày rồi nghỉ thì B làm nốt công việc trong 12 ngày.\
Bước 1. Gọi năng suất làm việc của A và B
⇒ Mỗi ngày A làm được \(\frac{1}{a}\) công việc.
⇒ Mỗi ngày B làm được \(\frac{1}{b}\) công việc.
Bước 2. Thiết lập quan hệ
\(\frac{1}{a} + \frac{1}{b} = \frac{1}{6} .\)
\(b = a + 9.\)
Bước 3. Giải hệ
Thay \(b = a + 9\):
\(\frac{1}{a} + \frac{1}{a + 9} = \frac{1}{6} .\)
Quy đồng:
\(\frac{\left(\right. a + 9 \left.\right) + a}{a \left(\right. a + 9 \left.\right)} = \frac{1}{6} .\) \(\frac{2 a + 9}{a^{2} + 9 a} = \frac{1}{6} .\)
Nhân chéo:
\(6 \left(\right. 2 a + 9 \left.\right) = a^{2} + 9 a .\) \(12 a + 54 = a^{2} + 9 a .\) \(a^{2} - 3 a - 54 = 0.\)
Giải phương trình bậc hai:
\(\Delta = \left(\right. - 3 \left.\right)^{2} - 4 \cdot 1 \cdot \left(\right. - 54 \left.\right) = 9 + 216 = 225.\) \(a = \frac{3 \pm 15}{2} .\)
⇒ A làm một mình: 9 ngày.
⇒ B làm một mình: \(b = 9 + 9 = 18\) ngày.
Bước 4. Tính phần việc A làm trong 3 ngày
A làm trong 9 ngày xong việc, nên trong 3 ngày A làm được:
\(\frac{3}{9} = \frac{1}{3} .\)
⇒ Còn lại \(\frac{2}{3}\) công việc.
Bước 5. B làm nốt
B làm 1 công việc trong 18 ngày, tức mỗi ngày \(\frac{1}{18}\).
Để làm \(\frac{2}{3}\):
\(\frac{2}{3} \div \frac{1}{18} = \frac{2}{3} \times 18 = 12.\)
✅ Kết quả: Nếu A làm 3 ngày rồi nghỉ thì B làm nốt công việc trong 12 ngày.\