Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ứng dụng giải toán đã được review rất hay bởi trang báo uy tín https://www.facebook.com/docbaoonlinethayban/videos/467035000526358/?v=467035000526358 Cả nhà tải ngay bằng link dưới đây nhé. https://giaingay.com.vn/downapp.html
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
1) \(3\sqrt{2}-4\sqrt{18}+2\sqrt{32}-\sqrt{50}\)
\(=3\sqrt{2}-12\sqrt{2}+8\sqrt{2}-5\sqrt{2}\)
\(=-6\sqrt{2}\)
2) \(\sqrt{50}-\sqrt{18}+\sqrt{200}-\sqrt{162}\)
\(=5\sqrt{2}-3\sqrt{2}+10\sqrt{2}-9\sqrt{2}\)
\(=3\sqrt{2}\)
3) \(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
\(=5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
\(=-2\sqrt{5}\)
4) \(5\sqrt{48}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)
\(=20\sqrt{3}-12\sqrt{3}-10\sqrt{3}+6\sqrt{3}\)
\(=4\sqrt{3}\)
5) \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}+\dfrac{10}{3}\sqrt{3}\)
\(=-\dfrac{17}{3}\sqrt{3}\)
a) Ta có: \(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{12}{3-\sqrt{3}}\)
\(=\dfrac{2\left(\sqrt{3}+1\right)}{2}-\dfrac{3\left(2+\sqrt{3}\right)}{1}+\dfrac{12\left(3+\sqrt{3}\right)}{6}\)
\(=\sqrt{3}+1-6-3\sqrt{3}+6+2\sqrt{3}\)
\(=1\)
b) Ta có: \(\dfrac{1}{\sqrt{3}-\sqrt{2}}-\dfrac{2}{\sqrt{7}+\sqrt{5}}-\dfrac{3}{\sqrt{5}-\sqrt{2}}+\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{7}+\sqrt{5}-\sqrt{5}-\sqrt{2}+\sqrt{7}-\sqrt{3}\)
=0
a) Ta có: \(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{12}{3-\sqrt{3}}\)
\(=\dfrac{2\left(\sqrt{3}+1\right)}{2}-\dfrac{3\left(2+\sqrt{3}\right)}{1}+\dfrac{12\left(3+\sqrt{3}\right)}{6}\)
\(=\sqrt{3}+1-6-3\sqrt{3}+2\left(3+\sqrt{3}\right)\)
\(=-2\sqrt{3}-5+6+2\sqrt{3}\)
=1
b) Ta có: \(\dfrac{1}{\sqrt{3}-\sqrt{2}}-\dfrac{2}{\sqrt{7}+\sqrt{5}}-\dfrac{3}{\sqrt{5}-\sqrt{2}}+\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{7}+\sqrt{5}-\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{3}\)
\(=\sqrt{2}-\sqrt{3}\)
a: \(A=\dfrac{2\sqrt{a}-9}{a-5\sqrt{a}+6}-\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{2\sqrt{a}+1}{3-\sqrt{a}}\)
\(=\dfrac{2\sqrt{a}-9}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}-\dfrac{\sqrt{a}+3}{\sqrt{a}-2}+\dfrac{2\sqrt{a}+1}{\sqrt{a}-3}\)
\(=\dfrac{2\sqrt{a}-9-\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)+\left(2\sqrt{a}+1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)
\(=\dfrac{2\sqrt{a}-9-a+9+2a-3\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)
\(=\dfrac{a-\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}=\dfrac{\sqrt{a}+1}{\sqrt{a}-3}\)
b: A<1
=>A-1<0
=>\(\dfrac{\sqrt{a}+1}{\sqrt{a}-3}-1< 0\)
=>\(\dfrac{\sqrt{a}+1-\sqrt{a}+3}{\sqrt{a}-3}< 0\)
=>\(\dfrac{4}{\sqrt{a}-3}< 0\)
=>căn a-3<0
=>0<=a<9 và a<>4
c: A là số nguyên
=>\(\sqrt{a}+1⋮\sqrt{a}-3\)
=>căn a-3+4 chia hết cho căn a-3
=>căn a-3 thuộc {1;-1;2;-2;4;-4}
mà a>=0 và a<>4; a<>9
nên a thuộc {16;25;1;49}
a, 2
b, \(\frac{1}{2}\)
c,\(\sqrt{3}\)
mk k chắc lém nhưng bn cho mk nha mk tl đầu tiên
m: \(=\dfrac{\sqrt{3}\left(2+\sqrt{3}\right)}{2+\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{1}-2-\sqrt{3}\)
\(=\sqrt{3}+2-\sqrt{2}-2-\sqrt{3}=-\sqrt{2}\)