Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(4x-1\right)^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=\left(4x\right)^3-3.\left(4x\right)^2.1+3.4x.1^2-1^3-\left(4x-3\right)\left(16x^2+3\right)\)
\(=64x^3-48x^2+12x-1-64x^3-12x-48x^2-9\)
\(=9\)
Vì kết quả là hằng số nên biểu thức trên không phụ thuộc vào x
b, \(=\frac{x^2+2.5.x+25+x^2-2.x.5+25}{x^2+25}\)
\(=\frac{2x^2+50}{x^2+25}=\frac{2\left(x^2+50\right)}{x^2+50}=2\)
2x2+y2+9=6x+2xy
=>2x2+y2+9-6x-2xy=0
=>(x2-2xy+y2)+(x2-6x+9)=0
=>(x-y)2+(x-3)2=0
do (x-y)2 ≥ 0 ∀ x,y
(x-3)2 ≥ 0 ∀x
=>(x-y)2+(x-3)2 =0 khi
=>\(\left[{}\begin{matrix}x-y=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=x=3\\x=3\end{matrix}\right.\)
thay x=3 và y=3
Q=32017.32018-32018. 32017+\(\dfrac{1}{9}.3.3\)
Q=1
Ta có: \(\left(x-y+z\right)^2=x^2-y^2+z^2\)
<=> \(x^2+y^2+z^2-2xy-2yz+2zx=x^2-y^2+z^2\)
<=> \(2y^2-2xy-2yz+2zx=0\)
<=> \(\left(2y^2-2yz\right)-\left(2xy-2xz\right)=0\)
<=>\(2y\left(y-z\right)-2x\left(y-z\right)=0\)
<=>\(2\left(y-x\right)\left(y-z\right)=0\)
<=> \(\left[\begin{array}{nghiempt}y-x=0\\y-z=0\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}y=x\\y=z\end{array}\right.\)
Với y=x thì mọi giá trị của z đều thỏa mãn.
Với y=z ta có: \(\left(x-2y\right)^2=x^2\)
<=> \(\left[\begin{array}{nghiempt}x-2y=-x\\x-2y=x\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x=y\\x=-y\end{array}\right.\)
=> x=y=z hoặc -x=y=z.
b, D = 2x^2-4x+3
D= 2(x^2-2x+1) +1
D= 2(x-1)^2+1 luôn lớn hơn hoặc bằng 1
V ậy giá trị nhỏ nhất của D =1 khi x=1
Bài 1:
Để M là số nguyên thì \(x^3-2x^2+4⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{3;1;4;0;6;-2\right\}\)
a) (x - 1) (x2 + x + 1) - (x + 1) (x2 - x + 1) + 2(x - 1) (x + 1) - 2(x + 2)2
= x3 - 1 - x3 - 1 + 2(x2 - 1) - 2(x2 + 4x + 4)
= -2 + 2x2 - 2 - 2x2 - 8x - 8
= -12
cam on nha