Luyện tập

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

I. Khái niệm cực đại, cực tiểu

Luyện tập

 
 
 

Hàm số y=-x^2+1y=x2+1 có bảng biến thiên và đồ thị như hình dưới đây.

Hàm số có đạo hàm y'=0y=0 tại x=x=.

Trên khoảng \left(-\infty;+\infty\right)(;+) hàm số đạt giá trị lớn nhất bằng  tại x=x=.

Kiểm tra

 

Định nghĩa: Hàm số y=f\left(x\right)y=f(x) xác định và liên tục trên khoảng \left(a;b\right)(a;b) (có thể a là -\inftyb là +\infty+ ) và điểm x_0\in\left(a;b\right)x0(a;b).

a) Nếu tồn tại số h>0h>0 sao cho f\left(x\right)< f\left(x_0\right)f(x)<f(x0) với mọi x\in\left(x_0-h;x_0+h\right)x(x0h;x0+h) và x\ne x_0x=x0 thì ta nói hàm số f\left(x\right)f(x) đạt cực đại tại x_0x0.

b) Nếu tồn tại số h>0h>0 sao cho f\left(x\right)>f\left(x_0\right)f(x)>f(x0) với mọi x\in\left(x_0-h;x_0+h\right)x(x0h;x0+h) và x\ne x_0x=x0 thì ta nói hàm số f\left(x\right)f(x) đạt cực tiểu tại x_0x0.

Chú ý:

1) Nếu hàm số f\left(x\right)f(x) đạt cực đại (cực tiểu) tại x_0x0 thì x_0x0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f\left(x_0\right)f(x0) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số, kí hiệu là f_{CĐ}fCĐ (f_{CT}fCT), còn điểm M\left(x_0;f\left(x_0\right)\right)M(x0;f(x0))  được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.

2) Các điểm cực đại và cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.

3) Nếu  hàm số y=f\left(x\right)y=f(x) có đạo hàm trên \left(a;b\right)(a;b) và đạt cực đại hoặc cực tiểu tại x_0x0 thì f'\left(x_0\right)=0f(x0)=0.

II. Điều kiện đủ để hàm số có cực trị

Định lý 1:  Giả sử hàm số y=f\left(x\right)y=f(x) liên tục trên khoảng K=\left(x_0-h;x_0+h\right)K=(x0h;x0+h) và có đạo hàm trên K hoặc trên K\backslash\left\{x_0\right\}K\{x0}, với h>0h>0.a) Nếu f'\left(x\right)>0f(x)>0 trên khoảng \left(x_0-h;x_0\right)(x0h;x0) và f'\left(x\right)< 0f(x)<0 trên khoảng \left(x_0;x_0+h\right)(x0;x0+h) thì x_0x0 là một điểm cực đại của hàm số f\left(x\right)f(x).

b)  Nếu f'\left(x\right)< 0f(x)<0 trên khoảng \left(x_0-h;x_0\right)(x0h;x0) và f'\left(x\right)>0f(x)>0 trên khoảng \left(x_0;x_0+h\right)(x0;x0+h) thì x_0x0 là một điểm cực tiểu của hàm số f\left(x\right)f(x).

    

 

Luyện tập

 
 
 

Tìm các điểm cực trị của hàm số y=-x^2+1y=x2+1.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}xR.

f'\left(x\right)=-2xf(x)=2x ; f'\left(x\right)=0\Leftrightarrow x=0f(x)=0x=0.

Bảng biến thiên

Nhìn vào bảng biến thiên hãy cho biết khẳng định nào dưới đây đúng?

Hàm số đạt cực tiểu bằng 1 tại x=0x=0.
Hàm số đạt cực đại bằng 0 tại x=1x=1.
Hàm số không có điểm cực trị.
Điểm \left(0;1\right)(0;1) là điểm cực trị của đồ thị hàm số.
Kiểm tra

III. Qui tắc tìm cực trị

Qui tắc 1:

1. Tìm tập xác định.

2 Tính f'\left(x\right)f(x) . Tìm các điểm tại đó f'\left(x\right)f(x) bằng 0 hoặc không xác định.

3. Lập bảng biến thiên.

4. Từ bảng biến thiên suy ra các điểm cực trị.

 

Luyện tập

 
 
 

Cho hàm số y=-x\left(x^2-3\right)y=x(x23). Khẳng định nào dưới đây đúng?

A
Hàm số đạt cực đại tại x_1=0x1=0 và đạt cực tiểu tại x_2=\sqrt{3}x2=3.
B
Phương trình y'=0y=0 có 2 nghiệm là x_1=0x1=0 và x_2=\sqrt{3}x2=3.
C
Hàm số có 3 cực trị.
D
Hàm số đạt cực tiểu tại x_1=-1x1=1 và đạt cực đại tại x_2=1x2=1.
Kiểm tra

 

Định lý 2: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm cấp hai trong khoảng \left(x_0-h;x_0+h\right)(x0h;x0+h), với h>0h>0. Khi đó:

a) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)>0f(x0)=0,f′′(x0)>0 thì x_0x0 là điểm cực tiểu;

b) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)< 0f(x0)=0,f′′(x0)<0 thì x_0x0 là điểm cực đại.

Áp dụng Định lý 2 ta có qui tắc sau đây để tìm cực trị của hàm số.

Qui tắc 2:

1. Tìm tập xác định.

2. Tính f'\left(x\right)f(x). Giải phương trình f'\left(x\right)=0f(x)=0 và kí hiệu x_ixi (i=1,2,...,ni=1,2,...,n) là tập các nghiệm của nó.

3. Tính f''\left(x\right)f′′(x) và f''\left(x_i\right)f′′(xi).

4. Dựa vào dấu của f''\left(x_i\right)f′′(xi) suy ra tính chất cực trị của điểm x_ixi.

 

Luyện tập

 
 
 

Tìm các điểm cực trị của hàm số y=\dfrac{x^4}{4}-2x^2+6y=4x42x2+6.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}xR.

f'\left(x\right)=x^3-4x=x\left(x^2-4\right)f(x)=x34x=x(x24)f'\left(x\right)=0\Leftrightarrow\left[{}\begin{aligned}x_1=0\\x_2=-2\\x_3=2\end{aligned}\right.f(x)=0x1=0x2=2x3=2

f''\left(x\right)=3x^2-4f′′(x)=3x24.

Với x_1=0x1=0 ta có f''\left(0\right)f′′(0) <> 0 \Rightarrow x_0=0x0=0 là điểm cực tiểucực đại.

Với x_2=-2x2=2 ta có f''\left(-2\right)f′′(2) <> 0 \Rightarrow x_2=-2x2=2 là điểm cực tiểucực đại.

Kiểm tra

I. Khái niệm cực đại, cực tiểu

Luyện tập

 
 
 

Hàm số y=-x^2+1y=x2+1 có bảng biến thiên và đồ thị như hình dưới đây.

Hàm số có đạo hàm y'=0y=0 tại x=x=.

Trên khoảng \left(-\infty;+\infty\right)(;+) hàm số đạt giá trị lớn nhất bằng  tại x=x=.

Kiểm tra

 

Định nghĩa: Hàm số y=f\left(x\right)y=f(x) xác định và liên tục trên khoảng \left(a;b\right)(a;b) (có thể a là -\inftyb là +\infty+ ) và điểm x_0\in\left(a;b\right)x0(a;b).

a) Nếu tồn tại số h>0h>0 sao cho f\left(x\right)< f\left(x_0\right)f(x)<f(x0) với mọi x\in\left(x_0-h;x_0+h\right)x(x0h;x0+h) và x\ne x_0x=x0 thì ta nói hàm số f\left(x\right)f(x) đạt cực đại tại x_0x0.

b) Nếu tồn tại số h>0h>0 sao cho f\left(x\right)>f\left(x_0\right)f(x)>f(x0) với mọi x\in\left(x_0-h;x_0+h\right)x(x0h;x0+h) và x\ne x_0x=x0 thì ta nói hàm số f\left(x\right)f(x) đạt cực tiểu tại x_0x0.

Chú ý:

1) Nếu hàm số f\left(x\right)f(x) đạt cực đại (cực tiểu) tại x_0x0 thì x_0x0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f\left(x_0\right)f(x0) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số, kí hiệu là f_{CĐ}fCĐ (f_{CT}fCT), còn điểm M\left(x_0;f\left(x_0\right)\right)M(x0;f(x0))  được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.

2) Các điểm cực đại và cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.

3) Nếu  hàm số y=f\left(x\right)y=f(x) có đạo hàm trên \left(a;b\right)(a;b) và đạt cực đại hoặc cực tiểu tại x_0x0 thì f'\left(x_0\right)=0f(x0)=0.

II. Điều kiện đủ để hàm số có cực trị

Định lý 1:  Giả sử hàm số y=f\left(x\right)y=f(x) liên tục trên khoảng K=\left(x_0-h;x_0+h\right)K=(x0h;x0+h) và có đạo hàm trên K hoặc trên K\backslash\left\{x_0\right\}K\{x0}, với h>0h>0.a) Nếu f'\left(x\right)>0f(x)>0 trên khoảng \left(x_0-h;x_0\right)(x0h;x0) và f'\left(x\right)< 0f(x)<0 trên khoảng \left(x_0;x_0+h\right)(x0;x0+h) thì x_0x0 là một điểm cực đại của hàm số f\left(x\right)f(x).

b)  Nếu f'\left(x\right)< 0f(x)<0 trên khoảng \left(x_0-h;x_0\right)(x0h;x0) và f'\left(x\right)>0f(x)>0 trên khoảng \left(x_0;x_0+h\right)(x0;x0+h) thì x_0x0 là một điểm cực tiểu của hàm số f\left(x\right)f(x).

    

 

Luyện tập

 
 
 

Tìm các điểm cực trị của hàm số y=-x^2+1y=x2+1.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}xR.

f'\left(x\right)=-2xf(x)=2x ; f'\left(x\right)=0\Leftrightarrow x=0f(x)=0x=0.

Bảng biến thiên

Nhìn vào bảng biến thiên hãy cho biết khẳng định nào dưới đây đúng?

Hàm số đạt cực tiểu bằng 1 tại x=0x=0.
Hàm số đạt cực đại bằng 0 tại x=1x=1.
Hàm số không có điểm cực trị.
Điểm \left(0;1\right)(0;1) là điểm cực trị của đồ thị hàm số.
Kiểm tra

III. Qui tắc tìm cực trị

Qui tắc 1:

1. Tìm tập xác định.

2 Tính f'\left(x\right)f(x) . Tìm các điểm tại đó f'\left(x\right)f(x) bằng 0 hoặc không xác định.

3. Lập bảng biến thiên.

4. Từ bảng biến thiên suy ra các điểm cực trị.

 

Luyện tập

 
 
 

Cho hàm số y=-x\left(x^2-3\right)y=x(x23). Khẳng định nào dưới đây đúng?

A
Hàm số đạt cực đại tại x_1=0x1=0 và đạt cực tiểu tại x_2=\sqrt{3}x2=3.
B
Phương trình y'=0y=0 có 2 nghiệm là x_1=0x1=0 và x_2=\sqrt{3}x2=3.
C
Hàm số có 3 cực trị.
D
Hàm số đạt cực tiểu tại x_1=-1x1=1 và đạt cực đại tại x_2=1x2=1.
Kiểm tra

 

Định lý 2: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm cấp hai trong khoảng \left(x_0-h;x_0+h\right)(x0h;x0+h), với h>0h>0. Khi đó:

a) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)>0f(x0)=0,f′′(x0)>0 thì x_0x0 là điểm cực tiểu;

b) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)< 0f(x0)=0,f′′(x0)<0 thì x_0x0 là điểm cực đại.

Áp dụng Định lý 2 ta có qui tắc sau đây để tìm cực trị của hàm số.

Qui tắc 2:

1. Tìm tập xác định.

2. Tính f'\left(x\right)f(x). Giải phương trình f'\left(x\right)=0f(x)=0 và kí hiệu x_ixi (i=1,2,...,ni=1,2,...,n) là tập các nghiệm của nó.

3. Tính f''\left(x\right)f′′(x) và f''\left(x_i\right)f′′(xi).

4. Dựa vào dấu của f''\left(x_i\right)f′′(xi) suy ra tính chất cực trị của điểm x_ixi.

 

Luyện tập

 
 
 

Tìm các điểm cực trị của hàm số y=\dfrac{x^4}{4}-2x^2+6y=4x42x2+6.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}xR.

f'\left(x\right)=x^3-4x=x\left(x^2-4\right)f(x)=x34x=x(x24)f'\left(x\right)=0\Leftrightarrow\left[{}\begin{aligned}x_1=0\\x_2=-2\\x_3=2\end{aligned}\right.f(x)=0x1=0x2=2x3=2

f''\left(x\right)=3x^2-4f′′(x)=3x24.

Với x_1=0x1=0 ta có f''\left(0\right)f′′(0) <> 0 \Rightarrow x_0=0x0=0 là điểm cực tiểucực đại.

Với x_2=-2x2=2 ta có f''\left(-2\right)f′′(2) <> 0 \Rightarrow x_2=-2x2=2 là điểm cực tiểucực đại.

Kiểm tra

I. Khái niệm cực đại, cực tiểu

Luyện tập

 
 
 

Hàm số y=-x^2+1y=x2+1 có bảng biến thiên và đồ thị như hình dưới đây.

Hàm số có đạo hàm y'=0y=0 tại x=x=.

Trên khoảng \left(-\infty;+\infty\right)(;+) hàm số đạt giá trị lớn nhất bằng  tại x=x=.

Kiểm tra

 

Định nghĩa: Hàm số y=f\left(x\right)y=f(x) xác định và liên tục trên khoảng \left(a;b\right)(a;b) (có thể a là -\inftyb là +\infty+ ) và điểm x_0\in\left(a;b\right)x0(a;b).

a) Nếu tồn tại số h>0h>0 sao cho f\left(x\right)< f\left(x_0\right)f(x)<f(x0) với mọi x\in\left(x_0-h;x_0+h\right)x(x0h;x0+h) và x\ne x_0x=x0 thì ta nói hàm số f\left(x\right)f(x) đạt cực đại tại x_0x0.

b) Nếu tồn tại số h>0h>0 sao cho f\left(x\right)>f\left(x_0\right)f(x)>f(x0) với mọi x\in\left(x_0-h;x_0+h\right)x(x0h;x0+h) và x\ne x_0x=x0 thì ta nói hàm số f\left(x\right)f(x) đạt cực tiểu tại x_0x0.

Chú ý:

1) Nếu hàm số f\left(x\right)f(x) đạt cực đại (cực tiểu) tại x_0x0 thì x_0x0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f\left(x_0\right)f(x0) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số, kí hiệu là f_{CĐ}fCĐ (f_{CT}fCT), còn điểm M\left(x_0;f\left(x_0\right)\right)M(x0;f(x0))  được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.

2) Các điểm cực đại và cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.

3) Nếu  hàm số y=f\left(x\right)y=f(x) có đạo hàm trên \left(a;b\right)(a;b) và đạt cực đại hoặc cực tiểu tại x_0x0 thì f'\left(x_0\right)=0f(x0)=0.

II. Điều kiện đủ để hàm số có cực trị

Định lý 1:  Giả sử hàm số y=f\left(x\right)y=f(x) liên tục trên khoảng K=\left(x_0-h;x_0+h\right)K=(x0h;x0+h) và có đạo hàm trên K hoặc trên K\backslash\left\{x_0\right\}K\{x0}, với h>0h>0.a) Nếu f'\left(x\right)>0f(x)>0 trên khoảng \left(x_0-h;x_0\right)(x0h;x0) và f'\left(x\right)< 0f(x)<0 trên khoảng \left(x_0;x_0+h\right)(x0;x0+h) thì x_0x0 là một điểm cực đại của hàm số f\left(x\right)f(x).

b)  Nếu f'\left(x\right)< 0f(x)<0 trên khoảng \left(x_0-h;x_0\right)(x0h;x0) và f'\left(x\right)>0f(x)>0 trên khoảng \left(x_0;x_0+h\right)(x0;x0+h) thì x_0x0 là một điểm cực tiểu của hàm số f\left(x\right)f(x).

    

 

Luyện tập

 
 
 

Tìm các điểm cực trị của hàm số y=-x^2+1y=x2+1.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}xR.

f'\left(x\right)=-2xf(x)=2x ; f'\left(x\right)=0\Leftrightarrow x=0f(x)=0x=0.

Bảng biến thiên

Nhìn vào bảng biến thiên hãy cho biết khẳng định nào dưới đây đúng?

Hàm số đạt cực tiểu bằng 1 tại x=0x=0.
Hàm số đạt cực đại bằng 0 tại x=1x=1.
Hàm số không có điểm cực trị.
Điểm \left(0;1\right)(0;1) là điểm cực trị của đồ thị hàm số.
Kiểm tra

III. Qui tắc tìm cực trị

Qui tắc 1:

1. Tìm tập xác định.

2 Tính f'\left(x\right)f(x) . Tìm các điểm tại đó f'\left(x\right)f(x) bằng 0 hoặc không xác định.

3. Lập bảng biến thiên.

4. Từ bảng biến thiên suy ra các điểm cực trị.

 

Luyện tập

 
 
 

Cho hàm số y=-x\left(x^2-3\right)y=x(x23). Khẳng định nào dưới đây đúng?

A
Hàm số đạt cực đại tại x_1=0x1=0 và đạt cực tiểu tại x_2=\sqrt{3}x2=3.
B
Phương trình y'=0y=0 có 2 nghiệm là x_1=0x1=0 và x_2=\sqrt{3}x2=3.
C
Hàm số có 3 cực trị.
D
Hàm số đạt cực tiểu tại x_1=-1x1=1 và đạt cực đại tại x_2=1x2=1.
Kiểm tra

 

Định lý 2: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm cấp hai trong khoảng \left(x_0-h;x_0+h\right)(x0h;x0+h), với h>0h>0. Khi đó:

a) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)>0f(x0)=0,f′′(x0)>0 thì x_0x0 là điểm cực tiểu;

b) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)< 0f(x0)=0,f′′(x0)<0 thì x_0x0 là điểm cực đại.

Áp dụng Định lý 2 ta có qui tắc sau đây để tìm cực trị của hàm số.

Qui tắc 2:

1. Tìm tập xác định.

2. Tính f'\left(x\right)f(x). Giải phương trình f'\left(x\right)=0f(x)=0 và kí hiệu x_ixi (i=1,2,...,ni=1,2,...,n) là tập các nghiệm của nó.

3. Tính f''\left(x\right)f′′(x) và f''\left(x_i\right)f′′(xi).

4. Dựa vào dấu của f''\left(x_i\right)f′′(xi) suy ra tính chất cực trị của điểm x_ixi.

 

Luyện tập

 
 
 

Tìm các điểm cực trị của hàm số y=\dfrac{x^4}{4}-2x^2+6y=4x42x2+6.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}xR.

f'\left(x\right)=x^3-4x=x\left(x^2-4\right)f(x)=x34x=x(x24)f'\left(x\right)=0\Leftrightarrow\left[{}\begin{aligned}x_1=0\\x_2=-2\\x_3=2\end{aligned}\right.f(x)=0x1=0x2=2x3=2

f''\left(x\right)=3x^2-4f′′(x)=3x24.

Với x_1=0x1=0 ta có f''\left(0\right)f′′(0) <> 0 \Rightarrow x_0=0x0=0 là điểm cực tiểucực đại.

Với x_2=-2x2=2 ta có f''\left(-2\right)f′′(2) <> 0 \Rightarrow x_2=-2x2=2 là điểm cực tiểucực đại.

Kiểm tra

I. Khái niệm cực đại, cực tiểu

Luyện tập

 
 
 

Hàm số y=-x^2+1y=x2+1 có bảng biến thiên và đồ thị như hình dưới đây.

Hàm số có đạo hàm y'=0y=0 tại x=x=.

Trên khoảng \left(-\infty;+\infty\right)(;+) hàm số đạt giá trị lớn nhất bằng  tại x=x=.

Kiểm tra

 

Định nghĩa: Hàm số y=f\left(x\right)y=f(x) xác định và liên tục trên khoảng \left(a;b\right)(a;b) (có thể a là -\inftyb là +\infty+ ) và điểm x_0\in\left(a;b\right)x0(a;b).

a) Nếu tồn tại số h>0h>0 sao cho f\left(x\right)< f\left(x_0\right)f(x)<f(x0) với mọi x\in\left(x_0-h;x_0+h\right)x(x0h;x0+h) và x\ne x_0x=x0 thì ta nói hàm số f\left(x\right)f(x) đạt cực đại tại x_0x0.

b) Nếu tồn tại số h>0h>0 sao cho f\left(x\right)>f\left(x_0\right)f(x)>f(x0) với mọi x\in\left(x_0-h;x_0+h\right)x(x0h;x0+h) và x\ne x_0x=x0 thì ta nói hàm số f\left(x\right)f(x) đạt cực tiểu tại x_0x0.

Chú ý:

1) Nếu hàm số f\left(x\right)f(x) đạt cực đại (cực tiểu) tại x_0x0 thì x_0x0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f\left(x_0\right)f(x0) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số, kí hiệu là f_{CĐ}fCĐ (f_{CT}fCT), còn điểm M\left(x_0;f\left(x_0\right)\right)M(x0;f(x0))  được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.

2) Các điểm cực đại và cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.

3) Nếu  hàm số y=f\left(x\right)y=f(x) có đạo hàm trên \left(a;b\right)(a;b) và đạt cực đại hoặc cực tiểu tại x_0x0 thì f'\left(x_0\right)=0f(x0)=0.

II. Điều kiện đủ để hàm số có cực trị

Định lý 1:  Giả sử hàm số y=f\left(x\right)y=f(x) liên tục trên khoảng K=\left(x_0-h;x_0+h\right)K=(x0h;x0+h) và có đạo hàm trên K hoặc trên K\backslash\left\{x_0\right\}K\{x0}, với h>0h>0.a) Nếu f'\left(x\right)>0f(x)>0 trên khoảng \left(x_0-h;x_0\right)(x0h;x0) và f'\left(x\right)< 0f(x)<0 trên khoảng \left(x_0;x_0+h\right)(x0;x0+h) thì x_0x0 là một điểm cực đại của hàm số f\left(x\right)f(x).

b)  Nếu f'\left(x\right)< 0f(x)<0 trên khoảng \left(x_0-h;x_0\right)(x0h;x0) và f'\left(x\right)>0f(x)>0 trên khoảng \left(x_0;x_0+h\right)(x0;x0+h) thì x_0x0 là một điểm cực tiểu của hàm số f\left(x\right)f(x).

    

 

Luyện tập

 
 
 

Tìm các điểm cực trị của hàm số y=-x^2+1y=x2+1.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}xR.

f'\left(x\right)=-2xf(x)=2x ; f'\left(x\right)=0\Leftrightarrow x=0f(x)=0x=0.

Bảng biến thiên

Nhìn vào bảng biến thiên hãy cho biết khẳng định nào dưới đây đúng?

Hàm số đạt cực tiểu bằng 1 tại x=0x=0.
Hàm số đạt cực đại bằng 0 tại x=1x=1.
Hàm số không có điểm cực trị.
Điểm \left(0;1\right)(0;1) là điểm cực trị của đồ thị hàm số.
Kiểm tra

III. Qui tắc tìm cực trị

Qui tắc 1:

1. Tìm tập xác định.

2 Tính f'\left(x\right)f(x) . Tìm các điểm tại đó f'\left(x\right)f(x) bằng 0 hoặc không xác định.

3. Lập bảng biến thiên.

4. Từ bảng biến thiên suy ra các điểm cực trị.

 

Luyện tập

 
 
 

Cho hàm số y=-x\left(x^2-3\right)y=x(x23). Khẳng định nào dưới đây đúng?

A
Hàm số đạt cực đại tại x_1=0x1=0 và đạt cực tiểu tại x_2=\sqrt{3}x2=3.
B
Phương trình y'=0y=0 có 2 nghiệm là x_1=0x1=0 và x_2=\sqrt{3}x2=3.
C
Hàm số có 3 cực trị.
D
Hàm số đạt cực tiểu tại x_1=-1x1=1 và đạt cực đại tại x_2=1x2=1.
Kiểm tra

 

Định lý 2: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm cấp hai trong khoảng \left(x_0-h;x_0+h\right)(x0h;x0+h), với h>0h>0. Khi đó:

a) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)>0f(x0)=0,f′′(x0)>0 thì x_0x0 là điểm cực tiểu;

b) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)< 0f(x0)=0,f′′(x0)<0 thì x_0x0 là điểm cực đại.

Áp dụng Định lý 2 ta có qui tắc sau đây để tìm cực trị của hàm số.

Qui tắc 2:

1. Tìm tập xác định.

2. Tính f'\left(x\right)f(x). Giải phương trình f'\left(x\right)=0f(x)=0 và kí hiệu x_ixi (i=1,2,...,ni=1,2,...,n) là tập các nghiệm của nó.

3. Tính f''\left(x\right)f′′(x) và f''\left(x_i\right)f′′(xi).

4. Dựa vào dấu của f''\left(x_i\right)f′′(xi) suy ra tính chất cực trị của điểm x_ixi.

 

Luyện tập

 
 
 

Tìm các điểm cực trị của hàm số y=\dfrac{x^4}{4}-2x^2+6y=4x42x2+6.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}xR.

f'\left(x\right)=x^3-4x=x\left(x^2-4\right)f(x)=x34x=x(x24)f'\left(x\right)=0\Leftrightarrow\left[{}\begin{aligned}x_1=0\\x_2=-2\\x_3=2\end{aligned}\right.f(x)=0x1=0x2=2x3=2

f''\left(x\right)=3x^2-4f′′(x)=3x24.

Với x_1=0x1=0 ta có f''\left(0\right)f′′(0) <> 0 \Rightarrow x_0=0x0=0 là điểm cực tiểucực đại.

Với x_2=-2x2=2 ta có f''\left(-2\right)f′′(2) <> 0 \Rightarrow x_2=-2x2=2 là điểm cực tiểucực đại.

Kiểm tra

I. Khái niệm cực đại, cực tiểu

Luyện tập

 
 
 

Hàm số y=-x^2+1y=x2+1 có bảng biến thiên và đồ thị như hình dưới đây.

Hàm số có đạo hàm y'=0y=0 tại x=x=.

Trên khoảng \left(-\infty;+\infty\right)(;+) hàm số đạt giá trị lớn nhất bằng  tại x=x=.

Kiểm tra

 

Định nghĩa: Hàm số y=f\left(x\right)y=f(x) xác định và liên tục trên khoảng \left(a;b\right)(a;b) (có thể a là -\inftyb là +\infty+ ) và điểm x_0\in\left(a;b\right)x0(a;b).

a) Nếu tồn tại số h>0h>0 sao cho f\left(x\right)< f\left(x_0\right)f(x)<f(x0) với mọi x\in\left(x_0-h;x_0+h\right)x(x0h;x0+h) và x\ne x_0x=x0 thì ta nói hàm số f\left(x\right)f(x) đạt cực đại tại x_0x0.

b) Nếu tồn tại số h>0h>0 sao cho f\left(x\right)>f\left(x_0\right)f(x)>f(x0) với mọi x\in\left(x_0-h;x_0+h\right)x(x0h;x0+h) và x\ne x_0x=x0 thì ta nói hàm số f\left(x\right)f(x) đạt cực tiểu tại x_0x0.

Chú ý:

1) Nếu hàm số f\left(x\right)f(x) đạt cực đại (cực tiểu) tại x_0x0 thì x_0x0 được gọi là điểm cực đại (điểm cực tiểu) của hàm số; f\left(x_0\right)f(x0) được gọi là giá trị cực đại (giá trị cực tiểu) của hàm số, kí hiệu là f_{CĐ}fCĐ (f_{CT}fCT), còn điểm M\left(x_0;f\left(x_0\right)\right)M(x0;f(x0))  được gọi là điểm cực đại (điểm cực tiểu) của đồ thị hàm số.

2) Các điểm cực đại và cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại (giá trị cực tiểu) còn gọi là cực đại (cực tiểu) và được gọi chung là cực trị của hàm số.

3) Nếu  hàm số y=f\left(x\right)y=f(x) có đạo hàm trên \left(a;b\right)(a;b) và đạt cực đại hoặc cực tiểu tại x_0x0 thì f'\left(x_0\right)=0f(x0)=0.

II. Điều kiện đủ để hàm số có cực trị

Định lý 1:  Giả sử hàm số y=f\left(x\right)y=f(x) liên tục trên khoảng K=\left(x_0-h;x_0+h\right)K=(x0h;x0+h) và có đạo hàm trên K hoặc trên K\backslash\left\{x_0\right\}K\{x0}, với h>0h>0.a) Nếu f'\left(x\right)>0f(x)>0 trên khoảng \left(x_0-h;x_0\right)(x0h;x0) và f'\left(x\right)< 0f(x)<0 trên khoảng \left(x_0;x_0+h\right)(x0;x0+h) thì x_0x0 là một điểm cực đại của hàm số f\left(x\right)f(x).

b)  Nếu f'\left(x\right)< 0f(x)<0 trên khoảng \left(x_0-h;x_0\right)(x0h;x0) và f'\left(x\right)>0f(x)>0 trên khoảng \left(x_0;x_0+h\right)(x0;x0+h) thì x_0x0 là một điểm cực tiểu của hàm số f\left(x\right)f(x).

    

 

Luyện tập

 
 
 

Tìm các điểm cực trị của hàm số y=-x^2+1y=x2+1.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}xR.

f'\left(x\right)=-2xf(x)=2x ; f'\left(x\right)=0\Leftrightarrow x=0f(x)=0x=0.

Bảng biến thiên

Nhìn vào bảng biến thiên hãy cho biết khẳng định nào dưới đây đúng?

Hàm số đạt cực tiểu bằng 1 tại x=0x=0.
Hàm số đạt cực đại bằng 0 tại x=1x=1.
Hàm số không có điểm cực trị.
Điểm \left(0;1\right)(0;1) là điểm cực trị của đồ thị hàm số.
Kiểm tra

III. Qui tắc tìm cực trị

Qui tắc 1:

1. Tìm tập xác định.

2 Tính f'\left(x\right)f(x) . Tìm các điểm tại đó f'\left(x\right)f(x) bằng 0 hoặc không xác định.

3. Lập bảng biến thiên.

4. Từ bảng biến thiên suy ra các điểm cực trị.

 

Luyện tập

 
 
 

Cho hàm số y=-x\left(x^2-3\right)y=x(x23). Khẳng định nào dưới đây đúng?

A
Hàm số đạt cực đại tại x_1=0x1=0 và đạt cực tiểu tại x_2=\sqrt{3}x2=3.
B
Phương trình y'=0y=0 có 2 nghiệm là x_1=0x1=0 và x_2=\sqrt{3}x2=3.
C
Hàm số có 3 cực trị.
D
Hàm số đạt cực tiểu tại x_1=-1x1=1 và đạt cực đại tại x_2=1x2=1.
Kiểm tra

 

Định lý 2: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm cấp hai trong khoảng \left(x_0-h;x_0+h\right)(x0h;x0+h), với h>0h>0. Khi đó:

a) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)>0f(x0)=0,f′′(x0)>0 thì x_0x0 là điểm cực tiểu;

b) Nếu f'\left(x_0\right)=0,f''\left(x_0\right)< 0f(x0)=0,f′′(x0)<0 thì x_0x0 là điểm cực đại.

Áp dụng Định lý 2 ta có qui tắc sau đây để tìm cực trị của hàm số.

Qui tắc 2:

1. Tìm tập xác định.

2. Tính f'\left(x\right)f(x). Giải phương trình f'\left(x\right)=0f(x)=0 và kí hiệu x_ixi (i=1,2,...,ni=1,2,...,n) là tập các nghiệm của nó.

3. Tính f''\left(x\right)f′′(x) và f''\left(x_i\right)f′′(xi).

4. Dựa vào dấu của f''\left(x_i\right)f′′(xi) suy ra tính chất cực trị của điểm x_ixi.

 

Luyện tập

 
 
 

Tìm các điểm cực trị của hàm số y=\dfrac{x^4}{4}-2x^2+6y=4x42x2+6.

Giải:

Hàm số xác định với mọi x\in\mathbb{R}xR.

f'\left(x\right)=x^3-4x=x\left(x^2-4\right)f(x)=x34x=x(x24)f'\left(x\right)=0\Leftrightarrow\left[{}\begin{aligned}x_1=0\\x_2=-2\\x_3=2\end{aligned}\right.f(x)=0x1=0x2=2x3=2

f''\left(x\right)=3x^2-4f′′(x)=3x24.

Với x_1=0x1=0 ta có f''\left(0\right)f′′(0) <> 0 \Rightarrow x_0=0x0=0 là điểm cực tiểucực đại.

Với x_2=-2x2=2 ta có f''\left(-2\right)f′′(2) <> 0 \Rightarrow x_2=-2x2=2 là điểm cực tiểucực đại.

Kiểm tra
4
14 tháng 10 2021

làm thế này thì chết mất

14 tháng 10 2021

độc kéo xuống thôi cũng lâu nx

21 tháng 10 2021

khong biet

21 tháng 10 2021

chịu lun

Kiểm tra học kì II Đề thi học kì II số 1 (40 câu) Các bài giảng Chọn hình thức làm bài (lựa chọn trước khi làm bài)Kiểm tra đáp án trong khi làm bàiKiểm tra đáp án sau khi hoàn thànhCâu hỏi 1 (1 điểm)Cho cấp số nhân (u_n)(un​), biết u_1 = 1u1​=1 và u_4 = 64u4​=64. Công bội của cấp số nhân bằng\pm 4±4.2 \sqrt 222​.44.2121.Câu hỏi 2 (1 điểm)Cho \log_3 6 = alog3​6=a. Khi đó giá trị của \log_3...
Đọc tiếp

Kiểm tra học kì II

 Đề thi học kì II số 1 (40 câu) Các bài giảng
 

Chọn hình thức làm bài (lựa chọn trước khi làm bài)

Kiểm tra đáp án trong khi làm bàiKiểm tra đáp án sau khi hoàn thành
Câu hỏi 1 (1 điểm)

Cho cấp số nhân (u_n)(un), biết u_1 = 1u1=1 và u_4 = 64u4=64. Công bội của cấp số nhân bằng

\pm 4±4.
2 \sqrt 222.
44.
2121.
Câu hỏi 2 (1 điểm)

Cho \log_3 6 = alog36=a. Khi đó giá trị của \log_3 18log318 được tính theo aa là

aa.
a+1a+1.
\dfrac{a}{a+1}a+1a.
a.(a+1)a.(a+1).
Câu hỏi 3 (1 điểm)

Tổng phần thực và phần ảo của số phức z = 1+2iz=1+2i bằng

11.
22.
33.
-11.
Câu hỏi 4 (1 điểm)

Cho hàm số y=f(x)y=f(x) có đồ thị như hình vẽ.

x y O − 1 1 − 1 − 2

Hàm số nghịch biến trên khoảng

\left(-\dfrac{\sqrt{2} }{2} ;-\dfrac{1}{2} \right)(22;21).
\left(\dfrac{1}{2} ;\dfrac{\sqrt{2} }{2} \right)(21;22).
\left(-\dfrac{\sqrt{2} }{2} ;\dfrac{1}{2} \right)(22;21).
\left(-\infty ;1\right)(;1).
Câu hỏi 5 (1 điểm)

Cho \displaystyle\int_{1}^{2}\left[4f\left(x\right)-2x\right]\text{d}x = 112[4f(x)2x]dx=1. Khi đó \displaystyle\int_{1}^{2}f\left(x\right) \text{d}x12f(x)dx bằng

-33.
33.
11.
-11.
Câu hỏi 6 (1 điểm)

Họ nguyên hàm của hàm số g(x)= 5^xg(x)=5x là

5^x\ln 5 +C5xln5+C.
\dfrac {5^{x+1}}{x+1}+Cx+15x+1+C.
5^{x+1} +C5x+1+C.
\dfrac {5^x}{\ln 5} +Cln55x+C.
Câu hỏi 7 (1 điểm)

Trong không gian với hệ trục OxyzOxyz cho điểm I(-5;0;5)I(5;0;5) là trung điểm của đoạn MNMN, biết M(1;-4;7)M(1;4;7). Tọa độ điểm NN là

N(-11;-4;3)N(11;4;3).
N(-2;-2;6)N(2;2;6).
N(-11;4;3)N(11;4;3).
N(-10;4;3)N(10;4;3).
Câu hỏi 8 (1 điểm)

Một nguyên hàm của hàm số f(x) = \sin 3xf(x)=sin3x là

\dfrac13 \cos 3x + \pi31cos3x+π.
-\dfrac13 \cos 3x + \dfrac{\pi}331cos3x+3π.
-3\cos 3x+ \dfrac{\pi}23cos3x+2π.
3 \cos x + 2\pi3cosx+2π.
Câu hỏi 9 (1 điểm)

Trong không gian OxyzOxyz, cho mặt cầu (S)(S)x^2 +y^2 +z^2 -2x+4y+4z+5=0x2+y2+z22x+4y+4z+5=0. Tâm của mặt cầu là

I(1;-2;-2)I(1;2;2).
I(2;4;4)I(2;4;4).
I(2;-4;-4)I(2;4;4).
I(-1;2;2)I(1;2;2).
Câu hỏi 10 (1 điểm)

Đường thẳng nào là tiệm cận ngang của đồ thị hàm số y = \dfrac{1-4x}{2x-1}y=2x114x?

y=4y=4.
y=-2y=2.
y = 2y=2.
y=\dfrac12y=21.
Câu hỏi 11 (1 điểm)

Phần ảo của số phức (1+i)z=3-i(1+i)z=3i bằng

11.
-22.
-ii.
-2i2i.
Câu hỏi 12 (1 điểm)

Biết \displaystyle \int^4_0 f(x)\text{d}x = -104f(x)dx=1. Khi đó I =\displaystyle \int^1_0 f(4x)\text{d}xI=01f(4x)dx bằng

44.
\dfrac 1441.
-\dfrac1441.
-22.
Câu hỏi 13 (1 điểm)

Giá trị PP là tích tất cả các nghiệm của phương trình 3.9^{x} -10.3^{x} +3=03.9x10.3x+3=0 bằng

P=1P=1.
P=9P=9.
P=-1P=1.
P=0P=0.
Câu hỏi 14 (1 điểm)

Trong không gian OxyzOxyz cho điểm A(1 ; -2; 4)A(1;2;4). Khoảng cách từ AA đến trục OxOx bằng

22.
\sqrt{21}21.
\sqrt{11}11.
2\sqrt525.
Câu hỏi 15 (1 điểm)

Cho hàm số y = f(x)y=f(x) có đạo hàm trên đoạn [1;2][1;2] và f(1) = 1f(1)=1f(2)=2f(2)=2. Khi đó \displaystyle \int^2_{1} f'(x)\text{d}x12f(x)dx bằng

33.
-11.
11.
\dfrac7227.
Câu hỏi 16 (1 điểm)

Gọi (H)(H) là hình phẳng giới hạn bởi đồ thị hàm số y = (x-1)^3(x-2)y=(x1)3(x2) và trục hoành. Diện tích hình phẳng (H)(H) bằng

S = -\dfrac1{20}S=201.
S = 0,05S=0,05.
S = -\dfrac15S=51.
S = 0,5S=0,5.
Câu hỏi 17 (1 điểm)

Trong không gian OxyzOxyz cho mặt phẳng (P):(P): 2x - 3y- 9z - 1 = 02x3y9z1=0. Điểm nào sau đây không thuộc mặt phẳng (P)(P)?

A(1;2;5)A(1;2;5).
B\left(0;-1;\dfrac13\right)B(0;1;31).
D\left(\dfrac14;-1;0\right)D(41;1;0).
C\left(2;-1;\dfrac23\right)C(2;1;32).
Câu hỏi 18 (1 điểm)

Trong không gian OxyzOxyz, cho mặt phẳng (P):(P): x-3y+2z-3=0x3y+2z3=0. Xét mặt phẳng (Q):(Q): 2x - 6y + mz -m = 02x6y+mzm=0mm là tham số thực. Giá trị mm để (P)(P) và (Q)(Q) song song là

m = -10m=10.
m = -6m=6.
m = 2m=2.
m = 4m=4.
Câu hỏi 19 (1 điểm)

Cho hàm số y = f(x)y=f(x) liên tục trên \mathbb{R}R có bảng xét dấu của như sau:

Số điểm cực tiểu của hàm số đã cho là

11.
44.
33.
22.
Câu hỏi 20 (1 điểm)

Tập xác định của hàm số y=2^{\sqrt{x}} +\log \left(3-x\right)y=2x+log(3x) là

\left[0;+\infty \right)[0;+).
\left(0;3\right)(0;3).
\left(-\infty ;3\right)(;3).
\left[0;3\right)[0;3).
Câu hỏi 21 (1 điểm)

Nghiệm của phương trình \log_{2} \left(3x-1\right)=0log2(3x1)=0 là

x=\dfrac{1}{3}x=31.
x=\dfrac{2}{3}x=32.
x=2x=2.
x=0x=0.
Câu hỏi 22 (1 điểm)

Cho f(x), g(x)f(x),g(x) là các hàm số có đạo hàm liên tục trên \mathbb{R}Rk \in \mathbb{R}kR. Trong các khẳng định dưới đây khẳng định nào sai?

\displaystyle \int[f (x) - g(x)] \text{d}x = \displaystyle \int f (x)\text{d}x - \displaystyle \int g(x)\text{d}x[f(x)g(x)]dx=f(x)dxg(x)dx.
\displaystyle \int f'(x)\text{d}x = f (x) + Cf(x)dx=f(x)+C.
\displaystyle \int[f (x) + g(x)] \text{d}x = \displaystyle \int f (x)\text{d}x + \displaystyle \int g(x)\text{d}x[f(x)+g(x)]dx=f(x)dx+g(x)dx.
\displaystyle \int kf (x)\text{d}x = k\displaystyle \int f (x)\text{d}xkf(x)dx=kf(x)dx.
Câu hỏi 23 (1 điểm)

Cho lăng trụ tam giác đều có độ dài tất cả các cạnh bằng 3a3a. Thể tích khối lăng trụ đã cho bằng

\dfrac{27\sqrt{3}a^{3}}{2}2273a3.
\dfrac{27\sqrt{3}a^{3}}{4}4273a3.
\dfrac{9\sqrt{3} a^{3}}{4}493a3.
\dfrac{9\sqrt{3} a^{3}}{2}293a3.
Câu hỏi 24 (1 điểm)

Cho số phức zz được biểu diễn bởi điểm M(-1; 3)M(1;3) trên mặt phẳng tọa độ. Môđun của số phức zz bằng

\sqrt 55.
1010.
\sqrt{10}10.
2\sqrt{2}22.
Câu hỏi 25 (1 điểm)

Cho các số phức z_1 = 1-2iz1=12iz_2 = -3+iz2=3+i. Điểm biểu diễn của số phức z=z_1+z_2z=z1+z2 trên mặt phẳng tọa độ là

M(-1;7)M(1;7).
M(2;-5)M(2;5).
M(4;-3)M(4;3).
M(-2;-1)M(2;1).
Câu hỏi 26 (1 điểm)

Trong không gian OxyzOxyz, một vectơ chỉ phương của đường thẳng \Delta:Δ: \dfrac{x}{1} =\dfrac{y}{2} =\dfrac{4-z}{-3}1x=2y=34z là

\overrightarrow{u}=\left(0;0;4\right)u=(0;0;4).
\overrightarrow{u}=\left(1;2;-3\right)u=(1;2;3).
\overrightarrow{u}=\left(1;2;3\right)u=(1;2;3).
\overrightarrow{u}=\left(1;-2;3\right)u=(1;2;3).
Câu hỏi 27 (1 điểm)

Đường cong ở hình vẽ là đồ thị của hàm số nào?

yxO1

y=\log_{\frac12} xy=log21x.
y=\log_{2} xy=log2x.
y=\left(\dfrac12\right)^xy=(21)x.
y=2^xy=2x.
Câu hỏi 28 (1 điểm)

Cho hàm số y=f(x)y=f(x) liên tục trên \mathbb{R}R và có bảng biến thiên như sau

x f ( x ) −∞ − 2 1 3 + + ∞ − 3 1 + ∞ + ∞ 0

Phương trình 2f(x)-3=02f(x)3=0 có bao nhiêu nghiệm?

22.
11.
44.
33.
Câu hỏi 29 (1 điểm)

Đường cong trong hình vẽ là đồ thị của hàm số nào sau đây?

y x O 1 2 − 1 − 2

y=\dfrac{2x-2}{x+1}y=x+12x2.
y=\dfrac{-x+2}{x+2}y=x+2x+2.
y=\dfrac{-2x+2}{x+1}y=x+12x+2.
y=\dfrac{x-2}{x+1}y=x+1x2.
Câu hỏi 30 (1 điểm)

Trong không gian OxyzOxyz, cho điểm M(1;-3;4)M(1;3;4), đường thẳng d:d: \dfrac{x+2}{3} = \dfrac{y-5}{-5} = \dfrac{z-2}{-1}3x+2=5y5=1z2 và mặt phẳng (P):(P): 2x + z - 2 = 02x+z2=0. Phương trình đường thẳng \DeltaΔ qua MM vuông góc với dd và song song với (P)(P) là

\dfrac{x-1}{-1} = \dfrac{y+3}{1} = \dfrac{z-4}{-2}1x1=1y+3=2z4.
\dfrac{x-1}{1} = \dfrac{y+3}{1} = \dfrac{z+4}{2}1x1=1y+3=2z+4.
\dfrac{x-1}{1} = \dfrac{y+3}{-1} = \dfrac{z+4}{2}1x1=1y+3=2z+4.
\dfrac{x-1}{1} = \dfrac{y+3}{1} = \dfrac{z-4}{-2}1x1=1y+3=2z4.
Câu hỏi 31 (1 điểm)

Kí hiệu z_{1}z1z_{2}z2 là hai nghiệm phức của phương trình z^{2} -5z+7=0z25z+7=0. Giá trị của \dfrac{1}{z_{1} } +\dfrac{1}{z_{2} }z11+z21 bằng

\dfrac{-5}{7}75.
\dfrac{-7}{5}57.
\dfrac{7}{5}57.
\dfrac{5}{7}75.
Câu hỏi 32 (1 điểm)

Trong không gian OxyzOxyz, cho mặt phẳng (\alpha):(α): 3x - y + 2z + 4 = 03xy+2z+4=0 và điểm M(3;-1;-2)M(3;1;2). Phương trình mặt phẳng đi qua MM và song song với (\alpha)(α) là

3x+y+2z-6=03x+y+2z6=0.
3x+y+2z+14=03x+y+2z+14=0.
3x-y+2z-6=03xy+2z6=0.
3x-y+2z+6=03xy+2z+6=0.
Câu hỏi 33 (1 điểm)

Trong không gian OxyzOxyz, cho điểm I(-2;1;3)I(2;1;3) và mặt phẳng (P):(P): 2x - y + 2z - 10 = 02xy+2z10=0. Biết rằng (S)(S) có tâm II và cắt (P)(P) theo một đường tròn (C)(C) có chu vi bằng 10\pi10π. Khi đó bán kính rr của mặt cầu (S)(S) bằng

r= 5r=5.
r = 4r=4.
r = \sqrt{34}r=34.
r = \sqrt5r=5.
Câu hỏi 34 (1 điểm)

Tập hợp điểm biểu diễn số phức zz thỏa mãn 2|z-1| = |z + \overline{z} +2|2∣z1∣=z+z+2∣ trên mặt phẳng tọa độ là một

elip.
đường thẳng.
đường tròn.
parabol.
Câu hỏi 35 (1 điểm)

Biết diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 3x^2 + 2mx + m^2 + 1y=3x2+2mx+m2+1, trục hoành, trục tung và đường thẳng x = \sqrt 2x=2 đạt giá trị nhỏ nhất. Mệnh đề nào sau đây đúng?

m \in (-2;1)m(2;1).
m \in(0;3)m(0;3).
m\in(-4;-1)m(4;1).
m\in(3;5)m(3;5).
Câu hỏi 36 (1 điểm)

Một ô tô đang chạy với vận tốc 5454 km/h thì tăng tốc chuyển động nhanh dần đều với gia tốc a(t) = 3t - 8a(t)=3t8 (m/s^22) trong đó tt là khoảng thời gian tính bằng giây. Quãng đường mà ô tô đi được sau 1010s kể từ lúc tăng tốc là

540540 m.
150150 m.
246246 m.
250250 m.
Câu hỏi 37 (1 điểm)

Cho xxyy là các số thực lớn hơn 11 thỏa mãn x^2-6y^2 = xyx26y2=xy. Giá trị M = \dfrac{1 + \log_{12} x + \log_{12} y}{2\log_{12}(x+3y)}M=2log12(x+3y)1+log12x+log12y bằng

\dfrac1221.
11.
\dfrac1441.
\dfrac1331.
Câu hỏi 38 (1 điểm)

Cho số phức zz thỏa mãn |z-1| \ le 1z1∣ le1 và z - \overline{z}zz có phần ảo không âm. Tập hợp các điểm biểu diễn cho số phức zz là một miền phẳng. Diện tích hình phẳng đó bằng

S = \piS=π.
S = 1S=1.
S = \dfrac12 \piS=21π.
S = 2\piS=2π.
Câu hỏi 39 (1 điểm)

Trong không gian OxyzOxyz, cho đường thẳng \Delta :\dfrac{x}{1}=\dfrac{y-1}{1}=\dfrac{z}{1}Δ:1x=1y1=1z và hai điểm A ( 1;2;-5)A(1;2;5)B ( -1;0;2)B(1;0;2). Biết điểm MM thuộc \DeltaΔ sao cho biểu thức T=\left| MA-MB \right|T=MAMB đạt giá trị lớn nhất là T_{\max }Tmax. Khi đó, T_{\max }Tmax bằng

33.
6\sqrt565.
\sqrt{57}57.
2\sqrt626.
Câu hỏi 40 (1 điểm)

Giá trị thực của mm để bất phương trình \log_{5} \left( x^2 + 1\right) \ge \log_{5} \left( mx^2 + 4x + m\right) - 1log5(x2+1)log5(mx2+4x+m)1 nghiệm đúng với mọi x \in \mathbb{R}xR là

m \ge 3m3.
2 < m \le 32<m3.
m < 2m<2.
2 \le m < 32m<3.
0
I. Sơ đồ khảo sát hàm số1. Tập xác định+ Phân thức: mẫu số khác 00;+ Căn thức: biểu thức trong căn không âm;+ Hàm số lượng giác.2. Sự biến thiên+ Xét chiều biến thiên của hàm số:Tính đạo hàm y'y′;Tìm các điểm mà tại đó đạo hàm bằng 00 hoặc không xác định;Xét dấu đạo hàm y'y′ suy ra chiều biến thiên của hàm số.+ Tìm cực trị.+ Tìm các giới hạn vô cực, các giới hạn tại...
Đọc tiếp

I. Sơ đồ khảo sát hàm số

1. Tập xác định

+ Phân thức: mẫu số khác 00;

+ Căn thức: biểu thức trong căn không âm;

+ Hàm số lượng giác.

2. Sự biến thiên

+ Xét chiều biến thiên của hàm số:

Tính đạo hàm y'y;

Tìm các điểm mà tại đó đạo hàm bằng 00 hoặc không xác định;

Xét dấu đạo hàm y'y suy ra chiều biến thiên của hàm số.

+ Tìm cực trị.

+ Tìm các giới hạn vô cực, các giới hạn tại vô cực và tiệm cận (nếu có).

+ Lập bảng biến thiên.

3. Đồ thị

+ Tìm giao điểm của đồ thị với các trục tọa độ;

+ Dựa vào các yếu tố ở trên để vẽ đồ thị;

+ Chú ý thêm tính chẵn, lẻ và tính tuần hoàn (nếu có). 

II. Khảo sát hàm số bậc ba dạng y=ax^3+bx^2+cx+dy=ax3+bx2+cx+d(a \ne 0)(a=0)

Ví dụ: Khảo sát hàm số y=-x^3+3x^2-4x+2y=x3+3x24x+2

1) Tập xác định \mathbb RR.

2) Sự biến thiên

+ Chiều biến thiên:

Luyện tập

 
 
 

y' =y=

-3x^3+6x^2-4x3x3+6x24x.
-x^2+3x-4x2+3x4.
-3x^2+6x-43x2+6x4.
Kiểm tra

 

Ta có y' = -3(x-1)^2-1 < 0,y=3(x1)21<0, \forall x \in \mathbb R.xR.

Luyện tập

 
 
 

Nên hàm số đã cho luôn nghịch biếnđồng biến trên khoảng (-\infty;+\infty)(;+)

và hàm số không có cực trịcó cực tiểucó cực đại.

Kiểm tra

+ Giới hạn tại vô cực:

\lim\limits_{x\rightarrow-\infty}y=\lim\limits_{x\rightarrow-\infty}\left[-x^3\left(1-\dfrac{3}{x}+\dfrac{4}{x^2}-\dfrac{2}{x^3}\right)\right]=+\inftyxlimy=xlim[x3(1x3+x24x32)]=+;

 

Luyện tập

 
 
 

\lim\limits_{x\rightarrow+\infty}y=x+limy=+-\infty

Kiểm tra

+ Bảng biến thiên

3) Đồ thị

Đồ thị hàm số cắt trục OxOx tại điểm (1;0)(1;0).

Luyện tập

 
 
 

và cắt trục OyOy tại điểm (012;-102)

Kiểm tra

Đồ thị của hàm số đã cho là

Dạng đồ thị các hàm số dạng y=ax^3+bx^2+cx+dy=ax3+bx2+cx+d(a\ne 0)(a=0)

III. Khảo sát hàm số trùng phương dạng y= ax^4+bx^2+cy=ax4+bx2+c(a\ne 0)(a=0)

IV. Khảo sát hàm số phân thức dạng y=\dfrac{ax+b}{cx+d}y=cx+dax+b(cx+d \ne 0; ad-bc \ne 0)(cx+d=0;adbc=0)

I. Sơ đồ khảo sát hàm số

1. Tập xác định

+ Phân thức: mẫu số khác 00;

+ Căn thức: biểu thức trong căn không âm;

+ Hàm số lượng giác.

2. Sự biến thiên

+ Xét chiều biến thiên của hàm số:

Tính đạo hàm y'y;

Tìm các điểm mà tại đó đạo hàm bằng 00 hoặc không xác định;

Xét dấu đạo hàm y'y suy ra chiều biến thiên của hàm số.

+ Tìm cực trị.

+ Tìm các giới hạn vô cực, các giới hạn tại vô cực và tiệm cận (nếu có).

+ Lập bảng biến thiên.

3. Đồ thị

+ Tìm giao điểm của đồ thị với các trục tọa độ;

+ Dựa vào các yếu tố ở trên để vẽ đồ thị;

+ Chú ý thêm tính chẵn, lẻ và tính tuần hoàn (nếu có). 

II. Khảo sát hàm số bậc ba dạng y=ax^3+bx^2+cx+dy=ax3+bx2+cx+d(a \ne 0)(a=0)

Ví dụ: Khảo sát hàm số y=-x^3+3x^2-4x+2y=x3+3x24x+2

1) Tập xác định \mathbb RR.

2) Sự biến thiên

+ Chiều biến thiên:

Luyện tập

 
 
 

y' =y=

-3x^3+6x^2-4x3x3+6x24x.
-x^2+3x-4x2+3x4.
-3x^2+6x-43x2+6x4.
Kiểm tra

 

Ta có y' = -3(x-1)^2-1 < 0,y=3(x1)21<0, \forall x \in \mathbb R.xR.

Luyện tập

 
 
 

Nên hàm số đã cho luôn nghịch biếnđồng biến trên khoảng (-\infty;+\infty)(;+)

và hàm số không có cực trịcó cực tiểucó cực đại.

Kiểm tra

+ Giới hạn tại vô cực:

\lim\limits_{x\rightarrow-\infty}y=\lim\limits_{x\rightarrow-\infty}\left[-x^3\left(1-\dfrac{3}{x}+\dfrac{4}{x^2}-\dfrac{2}{x^3}\right)\right]=+\inftyxlimy=xlim[x3(1x3+x24x32)]=+;

 

Luyện tập

 
 
 

\lim\limits_{x\rightarrow+\infty}y=x+limy=+-\infty

Kiểm tra

+ Bảng biến thiên

3) Đồ thị

Đồ thị hàm số cắt trục OxOx tại điểm (1;0)(1;0).

Luyện tập

 
 
 

và cắt trục OyOy tại điểm (012;-102)

Kiểm tra

Đồ thị của hàm số đã cho là

Dạng đồ thị các hàm số dạng y=ax^3+bx^2+cx+dy=ax3+bx2+cx+d(a\ne 0)(a=0)

III. Khảo sát hàm số trùng phương dạng y= ax^4+bx^2+cy=ax4+bx2+c(a\ne 0)(a=0)

IV. Khảo sát hàm số phân thức dạng y=\dfrac{ax+b}{cx+d}y=cx+dax+b(cx+d \ne 0; ad-bc \ne 0)(cx+d=0;adbc=0)

2
19 tháng 10 2021

solo tổ hợp xác suất ko ? 

19 tháng 10 2021

2k8 đăng toán 12 cc 

25 tháng 6 2021

đáp án câu hỏi:

 a.720 b.35 c.5040 d.1680

26 tháng 6 2021

ta có người thứ nhất có 7 cách người thứ 2 sẽ có 6 cách người thứ 3 sẽ có 5 cách.....

mà mỗi người có thể đổi chỗ cho nhau lên có số cách xếp là:

\(7!=1.2.3.4.5.6.7=5040\)

chọn (c) 5040

25 tháng 6 2021

hai tia MP và MN đối nhau nha

25 tháng 6 2021

okay bn

DD
17 tháng 6 2021

Tọa độ điểm \(N\)

\(\hept{\begin{cases}x_N=-8.2-2=-18\\y_N=0.2-\left(-6\right)=6\\z_N=8.2-11=5\end{cases}}\)

\(N\left(-18,6,5\right)\)

Chọn A. 

I. Tính đơn điệu của hàm sốHãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:Luyện tập   Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:Hàm số giảm trong khoảng nào dưới đây?(0;\pi)(0;π)(-\dfrac{\pi}{2};0)(−2π​;0)(\pi;\dfrac{3\pi}{2})(π;23π​)(-\dfrac{\pi}{2};\dfrac{\pi}{2})(−2π​;2π​)Kiểm tra1. Định nghĩa:Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử...
Đọc tiếp

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập

 
 
 

Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(0;π)
(-\dfrac{\pi}{2};0)(2π;0)
(\pi;\dfrac{3\pi}{2})(π;23π)
(-\dfrac{\pi}{2};\dfrac{\pi}{2})(2π;2π)
Kiểm tra

1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right)y=f(x) xác định trên K. Ta nói

Hàm số y=f\left(x\right)y=f(x) đồng biến (tăng) trên KK nếu với mọi cặp x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2 thì f\left(x_1\right)< f\left(x_2\right)f(x1)<f(x2);

Hàm số y=f\left(x\right)y=f(x) nghịch biến (giảm) trên KK nếu với mọi cặp  mà x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2  thì f\left(x_1\right)>f\left(x_2\right)f(x1)>f(x2).

Hàm số đồng biến hoặc nghịch biến trên KK được gọi chung là hàm số đơn điệu trên KK.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{3\pi}{2};2\pi\right)(23π;2π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

sdddssKiểm tra

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập

 
 
 

Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(0;π)
(-\dfrac{\pi}{2};0)(2π;0)
(\pi;\dfrac{3\pi}{2})(π;23π)
(-\dfrac{\pi}{2};\dfrac{\pi}{2})(2π;2π)
Kiểm tra

1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right)y=f(x) xác định trên K. Ta nói

Hàm số y=f\left(x\right)y=f(x) đồng biến (tăng) trên KK nếu với mọi cặp x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2 thì f\left(x_1\right)< f\left(x_2\right)f(x1)<f(x2);

Hàm số y=f\left(x\right)y=f(x) nghịch biến (giảm) trên KK nếu với mọi cặp  mà x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2  thì f\left(x_1\right)>f\left(x_2\right)f(x1)>f(x2).

Hàm số đồng biến hoặc nghịch biến trên KK được gọi chung là hàm số đơn điệu trên KK.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{3\pi}{2};2\pi\right)(23π;2π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập

 
 
 

Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(0;π)
(-\dfrac{\pi}{2};0)(2π;0)
(\pi;\dfrac{3\pi}{2})(π;23π)
(-\dfrac{\pi}{2};\dfrac{\pi}{2})(2π;2π)
Kiểm tra

1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right)y=f(x) xác định trên K. Ta nói

Hàm số y=f\left(x\right)y=f(x) đồng biến (tăng) trên KK nếu với mọi cặp x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2 thì f\left(x_1\right)< f\left(x_2\right)f(x1)<f(x2);

Hàm số y=f\left(x\right)y=f(x) nghịch biến (giảm) trên KK nếu với mọi cặp  mà x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2  thì f\left(x_1\right)>f\left(x_2\right)f(x1)>f(x2).

Hàm số đồng biến hoặc nghịch biến trên KK được gọi chung là hàm số đơn điệu trên KK.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{3\pi}{2};2\pi\right)(23π;2π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập

 
 
 

Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(0;π)
(-\dfrac{\pi}{2};0)(2π;0)
(\pi;\dfrac{3\pi}{2})(π;23π)
(-\dfrac{\pi}{2};\dfrac{\pi}{2})(2π;2π)
Kiểm tra

1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right)y=f(x) xác định trên K. Ta nói

Hàm số y=f\left(x\right)y=f(x) đồng biến (tăng) trên KK nếu với mọi cặp x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2 thì f\left(x_1\right)< f\left(x_2\right)f(x1)<f(x2);

Hàm số y=f\left(x\right)y=f(x) nghịch biến (giảm) trên KK nếu với mọi cặp  mà x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2  thì f\left(x_1\right)>f\left(x_2\right)f(x1)>f(x2).

Hàm số đồng biến hoặc nghịch biến trên KK được gọi chung là hàm số đơn điệu trên KK.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{3\pi}{2};2\pi\right)(23π;2π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập

 
 
 

Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(0;π)
(-\dfrac{\pi}{2};0)(2π;0)
(\pi;\dfrac{3\pi}{2})(π;23π)
(-\dfrac{\pi}{2};\dfrac{\pi}{2})(2π;2π)
Kiểm tra

1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right)y=f(x) xác định trên K. Ta nói

Hàm số y=f\left(x\right)y=f(x) đồng biến (tăng) trên KK nếu với mọi cặp x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2 thì f\left(x_1\right)< f\left(x_2\right)f(x1)<f(x2);

Hàm số y=f\left(x\right)y=f(x) nghịch biến (giảm) trên KK nếu với mọi cặp  mà x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2  thì f\left(x_1\right)>f\left(x_2\right)f(x1)>f(x2).

Hàm số đồng biến hoặc nghịch biến trên KK được gọi chung là hàm số đơn điệu trên KK.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{3\pi}{2};2\pi\right)(23π;2π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập

 
 
 

Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(0;π)
(-\dfrac{\pi}{2};0)(2π;0)
(\pi;\dfrac{3\pi}{2})(π;23π)
(-\dfrac{\pi}{2};\dfrac{\pi}{2})(2π;2π)
Kiểm tra

1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right)y=f(x) xác định trên K. Ta nói

Hàm số y=f\left(x\right)y=f(x) đồng biến (tăng) trên KK nếu với mọi cặp x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2 thì f\left(x_1\right)< f\left(x_2\right)f(x1)<f(x2);

Hàm số y=f\left(x\right)y=f(x) nghịch biến (giảm) trên KK nếu với mọi cặp  mà x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2  thì f\left(x_1\right)>f\left(x_2\right)f(x1)>f(x2).

Hàm số đồng biến hoặc nghịch biến trên KK được gọi chung là hàm số đơn điệu trên KK.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{3\pi}{2};2\pi\right)(23π;2π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

Kiểm tra

 

I. Tính đơn điệu của hàm số

Hãy hoàn thành 2 câu hỏi dưới đây để nhớ lại kiến thức cũ đã học:

Luyện tập

 
 
 

Cho đồ thị hàm số y=\cos xy=cosx như hình vẽ sau:

Hàm số giảm trong khoảng nào dưới đây?

(0;\pi)(0;π)
(-\dfrac{\pi}{2};0)(2π;0)
(\pi;\dfrac{3\pi}{2})(π;23π)
(-\dfrac{\pi}{2};\dfrac{\pi}{2})(2π;2π)
Kiểm tra

1. Định nghĩa:

Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng. Giả sử hàm số y=f\left(x\right)y=f(x) xác định trên K. Ta nói

Hàm số y=f\left(x\right)y=f(x) đồng biến (tăng) trên KK nếu với mọi cặp x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2 thì f\left(x_1\right)< f\left(x_2\right)f(x1)<f(x2);

Hàm số y=f\left(x\right)y=f(x) nghịch biến (giảm) trên KK nếu với mọi cặp  mà x_1,x_2\in Kx1,x2K mà x_1< x_2x1<x2  thì f\left(x_1\right)>f\left(x_2\right)f(x1)>f(x2).

Hàm số đồng biến hoặc nghịch biến trên KK được gọi chung là hàm số đơn điệu trên KK.

Nhận xét: Từ định nghĩa trên ta thấy:

a) f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số đồng biếnnghịch biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số đồng biếnnghịch biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{3\pi}{2};2\pi\right)(23π;2π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số đồng biếnnghịch biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

Kiểm tra

 

4
14 tháng 10 2021

có vẻ ngắn

14 tháng 10 2021

đọc hết thanh xuân

1= f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in K⇔x2​−x1​f(x2​)−f(x1​)​>0,∀x1​,x2​∈K (x_1\ne x_2x1​=x2​);    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in K⇔x2​−x1​f(x2​)−f(x1​)​<0,∀x1​,x2​∈K​ (x_1\ne x_2x1​=x2​).b) Nếu hàm số đồng...
Đọc tiếp

1=

 f\left(x\right)f(x) đồng biến trên KK \Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}>0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)>0,x1,x2K (x_1\ne x_2x1=x2);

    f\left(x\right)f(x) nghịch biến trên KK   ​\Leftrightarrow\dfrac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}< 0,\forall x_1,x_2\in Kx2x1f(x2)f(x1)<0,x1,x2K​ (x_1\ne x_2x1=x2).

b) Nếu hàm số đồng biến trên K thì đồ thị đi lên từ trái sang phải (hình a);

    Nếu hàm số nghịch biến trên K thì đồ thị đi xuống từ trái sang phải (hình b).

         

2) Tính đơn điệu và dấu của đạo hàm

 

Luyện tập

 
 
 

Cho hàm số y=-\dfrac{x^2}{2}y=2x2 với đồ thị như sau. Hàm số có đạo hàm y'=-xy=x

Trên khoảng \left(-\infty;0\right)(;0) đạo hàm mang dấu dươngâm , hàm số nghịch biếnđồng biến.

Trên khoảng \left(0;+\infty\right)(0;+) đạo hàm mang dấu dươngâm, hàm số nghịch biếnđồng biến.

Kiểm tra

 

Định lý: Cho hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K.

a) Nếu f'\left(x\right)>0f(x)>0 với mọi xx thuộc K thì hàm số f\left(x\right)f(x) đồng biến trên K.

b) Nếu f'\left(x\right)< 0f(x)<0 với mọi xx thuộc K thì hàm số nghịch biến trên K.

 

Luyện tập

 
 
 

Xét hàm số y=\sin xy=sinx trên khoảng \left(0;2\pi\right)(0;2π) có đạo hàm và bảng biến thiên như sau:

Hàm số y=\sin xy=sinx đồng biến trên những khoảng nào dưới đây?

\left(0;\dfrac{\pi}{2}\right)(0;2π)
\left(\dfrac{\pi}{2};\dfrac{3\pi}{2}\right)(2π;23π)
\left(\dfrac{3\pi}{2};\pi\right)(23π;π)
\left(0;\dfrac{3\pi}{2}\right)(0;23π)
Kiểm tra

 

Định lý mở rộng: Giả sử hàm số y=f\left(x\right)y=f(x) có đạo hàm trên K. Nếu f'\left(x\right)\ge0f(x)0 (hoặc f'\left(x\right)\le0f(x)0), \forall x\in KxK và f'\left(x\right)=0f(x)=0 chỉ tại một số hữu hạn điểm thì hàm số đồng biến (hoặc nghịch biến) trên K.

Ví dụ: hàm số y=2x^3+6x^2+6x-7y=2x3+6x2+6x7 có đạo hàm y'=6x^2+12x+6=6\left(x+1\right)^2\ge0,\forall x\in\mathbb{R}y=6x2+12x+6=6(x+1)20,xR. Vậy hàm số đồng biến trên \mathbb{R}R.

II. Qui tắc xét tính đơn điệu của hàm số

Qui tắc:

1. Tìm tập xác định

2. Tính đạo f'\left(x\right)f(x). Tìm các điểm x_1,x_2,...,x_nx1,x2,...,xn mà tại đó đạo hàm bằng 0 hoặc không xác định.

3. Sắp xếp các điểm x_1,x_2,...,x_nx1,x2,...,xn theo thứ tự tăng dần và lập bảng biến thiên.

4. Rút ra kết luận về các khoảng đồng biến, nghịch biến của hàm số.

 

Luyện tập

 
 
 

Xét sự đồng biến, nghịch biến của hàm số y=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2-2x+2y=31x321x22x+2.

1) Tập xác định: \mathbb{R}R.

2) y'=x^2-x-2y=x2x2y'=0\Leftrightarrow\left[{}\begin{aligned}x=-1\\x=2\end{aligned}\right.y=0[x=1x=2

3) Bảng biến thiên

    

4) Rút ra kết luận:

 Hàm số nghịch biếnđồng biến trên các khoảng \left(-\infty;-1\right)(;1) và \left(2;+\infty\right)(2;+).

 Hàm số đồng biếnnghịch biến trên khoản \left(-1;2\right)(1;2).

 

0