Cứuuuu em với em bó tay rồi,giải chi tiết nhé :3 Cho tứ diện ABCD gọi I,J là các điểm l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Gọi N = DK ∩ AC; M = DJ ∩ BC.

Ta có (DJK) ∩ (ABC) = MN ⇒ MN ⊂ (ABC).

Vì L = (ABC) ∩ JK nên dễ thấy L = JK ∩ MN.

b) Ta có I là một điểm chung của (ABC) và (IJK).

Mặt khác vì L = MN ∩ JK mà MN ⊂ (ABC) và JK ⊂ (IJK) nên L là điểm chung thứ hai của (ABC) và (IJK), suy ra (IJK) ∩ (ABC) = IL.

Gọi E = IL ∩ AC; F = EK ∩ CD. Lí luận tương tự ta có EF = (IJK) ∩ (ACD).

Nối FJ cắt BD tại P; P là một giao điểm (IJK) và (BCD).

Ta có PF = (IJK) ∩ (BCD) Và IP = (ABD) ∩ (IJK)

25 tháng 5 2017

a) Gọi \(N=DK\cap AC;M=DJ\cap BC\).

Ta có \(\left(DJK\right)\cap\left(ABC\right)=MN\Rightarrow MN\subset\left(ABC\right)\)

\(L=\left(ABC\right)\cap JK\) nên dễ thấy \(L=JK\cap MN\)

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

28 tháng 6 2021

1) Bài toán trọng tâm của tứ diện:

A B C D G E F H K M N

Ta có NE,MF lần lượt là đường trung bình của \(\Delta ABC,\Delta ADC\), suy ra \(\hept{\begin{cases}NE=MF=\frac{AC}{2}\\NE||MF\end{cases}}\)

Suy ra tứ giác EMFN là hình bình hành. Do đó EF,MN cắt nhau tại trung điểm của mỗi đoạn.

Tương tự MN,HK cũng cắt nhau tại trung điểm của mỗi đoạn.

Vậy EF,HK,MN đồng quy tại trung điểm G của chúng. G chính là trọng tâm của tứ diện ABCD.

*) Nhận xét: Ta dễ dàng chỉ ra:

i) AG,BG,CG,DG lần lượt đi qua trọng tâm GA,GB,GC,GD của các tam giác BCD,ACD,ABD,AB

ii) \(\frac{GA}{GG_A}=\frac{GB}{GG_B}=\frac{GC}{GG_C}=\frac{GD}{GG_D}=3\)

iii) \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=\overrightarrow{0}\)

2) Ta phát biểu bổ đề sau: Cho tam giác ABC, điểm M thuộc đường thẳng BC. Ta có \(\overrightarrow{AM}=\frac{\overline{BM}}{\overline{BC}}\overrightarrow{AC}+\frac{\overline{CM}}{\overline{CB}}\overrightarrow{AB}\)

A B C M N

Chứng minh: Lấy điểm N trên AB sao cho MN || AC, ta có:

\(\overrightarrow{AM}=\overrightarrow{AN}+\overrightarrow{NM}=\frac{\overline{AN}}{\overline{AB}}\overrightarrow{AB}+\frac{\overline{NM}}{\overline{AC}}\overrightarrow{AC}=\frac{\overline{CM}}{\overline{CB}}\overrightarrow{AB}+\frac{\overline{BM}}{\overline{BC}}\overrightarrow{AC}\)

Lời giải:

A B C D A' B' C' D' G A G

Gọi G và G' lần lượt là trọng tâm của tứ diện ABCD và A'B'C'D'.

Ta có: \(\overrightarrow{AG}=\frac{3}{4}\overrightarrow{AG_A}=\frac{3}{4}.\frac{1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}\right)=\frac{\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}}{4}\left(1\right)\)

Mặt khác \(\frac{\overline{A'A}}{\overline{A'B}}=\frac{\overline{B'B}}{\overline{B'C}}=\frac{\overline{C'C}}{\overline{C'D}}=\frac{\overline{D'D}}{\overline{D'A}}=k\), suy ra:

\(\frac{\overline{AA'}}{\overline{AB}}=\frac{\overline{BB'}}{\overline{BC}}=\frac{\overline{CC'}}{\overline{CD}}=\frac{k}{k-1};\frac{\overline{AD'}}{\overline{AD}}=\frac{\overline{DC'}}{\overline{DC}}=\frac{\overline{CB'}}{\overline{CB}}=\frac{-1}{k-1}\)

Từ đó: \(\overrightarrow{AA'}=\frac{\overline{AA'}}{\overline{AB}}\overrightarrow{AB}=\frac{k}{k-1}\overrightarrow{AB};\overrightarrow{AD'}=\frac{-1}{k-1}\overrightarrow{AD}\)

\(\overrightarrow{AB'}=\frac{\overline{BB'}}{\overline{BC}}\overrightarrow{AC}+\frac{\overline{CB'}}{\overline{CB}}\overrightarrow{AB}=\frac{k}{k-1}\overrightarrow{AC}-\frac{1}{k-1}\overrightarrow{AB}\)

\(\overrightarrow{AC'}=\frac{\overline{CC'}}{\overline{CD}}\overrightarrow{AD}+\frac{\overline{DC'}}{\overline{DC}}\overrightarrow{AC}=\frac{k}{k-1}\overrightarrow{AD}-\frac{1}{k-1}\overrightarrow{AC}\)

Suy ra \(\overrightarrow{AG'}=\frac{1}{4}\left(\overrightarrow{AA'}+\overrightarrow{AB'}+\overrightarrow{AC'}+\overrightarrow{AD'}+\overrightarrow{A'G'}+\overrightarrow{B'G'}+\overrightarrow{C'G'}+\overrightarrow{D'G'}\right)\)

\(=\frac{\overrightarrow{AA'}+\overrightarrow{AB'}+\overrightarrow{AC'}+\overrightarrow{AD'}}{4}\)

\(=\frac{1}{4}\left(\frac{k}{k-1}\overrightarrow{AB}+\frac{k}{k-1}\overrightarrow{AC}-\frac{1}{k-1}\overrightarrow{AB}+\frac{k}{k-1}\overrightarrow{AD}-\frac{1}{k-1}\overrightarrow{AC}-\frac{1}{k-1}\overrightarrow{AD}\right)\)

\(=\frac{\overrightarrow{AB}+\overrightarrow{AC}+\overrightarrow{AD}}{4}\left(2\right)\)

Từ (1),(2) suy ra \(\overrightarrow{AG}=\overrightarrow{AG'}\). Vậy G trùng G' hay hai tứ diện ABCD và A'B'C'D' có cùng trọng tâm.

11 tháng 9 2021

undefined

a,Hiển nhiên : K ∈ (KAD), mà K ∈ BC nên K ∈ (BCD)

Hiển nhiên : D ∈ (KAD) và D ∈ (BCD)

⇒ (KAD) \(\cap\) (BCD) = DK

b, Hiển nhiên : K ∈ (KAD), mà K ∈ BC nên K ∈ (IBC) 

Hiển nhiên I ∈ (IBC), mà I ∈ AD nên I ∈ (KAD)

⇒ (KAD) \(\cap\) (BCI) = IK

c, Trong (ABD) gọi E là giao điểm của BI và DM

⇒ \(\left\{{}\begin{matrix}E\in\left(IBC\right)\\E\in\left(DMN\right)\end{matrix}\right.\)

Trong (ACD) gọi F là giao điểm của CI và DN

⇒ \(\left\{{}\begin{matrix}F\in\left(IBC\right)\\F\in\left(DMN\right)\end{matrix}\right.\)

Vậy (DMN) \(\cap\) (IBC) = EF 

11 tháng 9 2021

sửa điểm H trên hình thành điểm F nhá

13 tháng 5 2019

Trong mặt phẳng (BCD); IJ cắt CD tại H nên H thuộc (ACD)

Điểm H thuộc IJ m suy ra bốn điểm M; I; J; H  đồng phẳng.

Nên trong mặt phẳng (IJM) , MH cắt IJ tại H và  M H ⊂ I J M .

Mặt khác  M ∈ A C D H ∈ A C D    ⇒    M H ⊂ A C D .

Vậy giao tuyến của 2 mặt phẳng (ACD) và ( IJM) là MH

Chọn D. 

21 tháng 11 2023

Trong mp(BCD), gọi M là giao điểm của KJ với DC

\(M\in KJ\subset\left(IJK\right)\)

\(M\in CD\subset\left(ACD\right)\)

Do đó: \(M\in\left(IJK\right)\cap\left(ACD\right)\left(1\right)\)

\(I\in AC\subset\left(ACD\right);I\in\left(IJK\right)\)

=>\(I\in\left(ACD\right)\cap\left(IJK\right)\left(2\right)\)

Từ (1) và (2) suy ra \(\left(IJK\right)\cap\left(ACD\right)=MI\)

Xét ΔCAB có

\(\dfrac{CI}{CA}=\dfrac{CJ}{CB}=\dfrac{1}{2}\)

nên IJ//AB

\(K\in BD\subset\left(ABD\right);K\in\left(IJK\right)\)

=>\(K\in\left(ABD\right)\cap\left(IJK\right)\)

Xét (ABD) và (IJK) có

\(K\in\left(ABD\right)\cap\left(IJK\right)\)

IJ//AB

Do đó: (ABD) giao (IJK)=xy, xy đi qua K và xy//IJ//AB

11 tháng 4 2019

Giải bài 8 trang 54 sgk Hình học 11 | Để học tốt Toán 11

a) Trong mp(ABD): MP không song song với BD nên MP ∩ BD = E.

E ∈ MP ⇒ E ∈ (PMN)

E ∈ BD ⇒ E ∈ (BCD)

⇒ E ∈ (PMN) ∩ (BCD)

Dễ dàng nhận thấy N ∈ (PMN) ∩ (BCD)

⇒ EN = (PMN) ∩ (BCD)

b) Trong mp(BCD) : gọi giao điểm EN và BC là F.

F ∈ EN, mà EN ⊂ (PMN) ⇒ F ∈ (PMN)

 

⇒ F = (PMN) ∩ BC.