Cho tam giác vuông ABCD vuông tại A và B kẻ EF vuông góc AB biết...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2021

a) Xét hthang ABCD có:

AD//EF(cùng vuông góc với AB)

F là trung điểm AB( \(AF=\dfrac{1}{2}AB\))

=> E là trung điểm DC

1 tháng 10 2021

\(a,\) Vì \(AF=\dfrac{1}{2}AB\left(=6\right)\) nên F là trung điểm AB

Mà \(EF//AD//BC\left(\perp AB\right)\)

Do đó E là trung điểm DC

\(b,\) Đề ko đủ nhé

21 tháng 4 2021

hình bạn tự vẽ

a) Vì ΔABC vuông tại A, áp dụng định lí Pythagoras ta có :

BC2 = AB2 + AC2

=> \(AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8cm\)

Vì BD là phân giác của ^ABC nên theo tính chất đường phân giác trong tam giác ta có : AD/AB = CD/BC

Áp dụng tính chất dãy tỉ số bằng nhau ta có : \(\frac{AD}{AB}=\frac{CD}{BC}=\frac{AD+CD}{AB+BC}=\frac{AC}{AB+BC}=\frac{8}{16}=\frac{1}{2}\)

=> \(\hept{\begin{cases}\frac{AD}{AB}=\frac{1}{2}\\\frac{CD}{BC}=\frac{1}{2}\end{cases}}\Leftrightarrow\hept{\begin{cases}AD=\frac{1}{2}AB=3cm\\CD=\frac{1}{2}BC=5cm\end{cases}}\)

b) Xét ΔBHA và ΔBAC có :

^B chung

^H = ^A = 900 

=> ΔBHA ~ ΔBAC (g.g)

=> BH/BA = HA/AC = AB/BC

=> AB2 = BH.BC ( đpcm )

=> BH = AB2/BC = 36/10 = 3,6cm

=> HC = BC - BH = 10 - 3,6 = 6,4cm

c) Xét ΔBHI và ΔBAD có :

^H = ^A = 900

^HBI = ^ABD ( BD là phân giác của ^B )

=> ΔBHI ~ ΔBAD (g.g)

=> BH/BA = HI/AD = BI/BD

=> HI = AD.BH/AB

Vì ΔAHB vuông tại H, áp dụng định lí Pythagoras ta có :

AB2 = BH2 + AH2

=> \(AH=\sqrt{AB^2-BH^2}=\sqrt{6^2-3,6^2}=4,8cm\)

=> HI = AD.BH/AB = 3.3,6/6 = 1,8cm

=> IH.DC = 1,8 . 5 = 9cm ; AD2 = 32 = 9cm

=> IH.DC = AD2 (đpcm)

:)

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với ACBài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF...
Đọc tiếp

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD 
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

0