Cho tam giác abc vuông tại a (ab>ac).Gọi M là trung điểm của...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2021

giúp mình với ạ, mình đang cần gấp

7 tháng 11 2021

ABCDMNIKH

a) Vì tứ giác ANDM có:

^A=90 độ ( t/g ABC vuông tại A)

^AMD=90 độ (M là hình chiếu của D trên AB)

^AND=90 độ (N là hình chiếu của D trên AC)

=> ANDM là hình chữ nhật ( vì có 3 góc _|_)

b) Vì:KD=DN (K đối xứng với N)

       ID=DM (I đối xứng với M)

=> KN_|_MI;IM_|_KN

Do đó: MNKI là hình thoi (hai đường chéo _|_ vs nhau)

c)  MHN mình vẽ sai bạn vẽ lại nhé

Ta có ^A=90 độ ( t/g ABC vuông)=>^NHA=\(\frac{\widehat{A}}{2}=\frac{90^o}{2}=45^o\left(1\right)\)

Mặt khác: AH đường cao=> ^H=90 độ=>^MHA=\(\frac{\widehat{H}}{2}=\frac{90^o}{2}=45^o\left(2\right)\)

Cộng (1) với (2)

=> ^NHA+^MHA=^MHN

=>45 độ + 45 độ =^MHN

=>^MHN=90 độ 

Vậy ^MHN=90 độ

a: BC=20cm

AK=10cm

4 tháng 1 2023

làm như cứt

20 tháng 12 2022

a: Xét tứ giác ADCH có

M là trung điểm chung của AC và HD

góc AHC=90 độ

Do đó: ADCH là hình chữ nhật

b: Xét tứ giác ADHE có

AD//HE

AD=HE

Do đó: ADHE là hình bình hành

 

8 tháng 8 2019

A B C H D E M N I

a) Tứ giác AEHD có 3 góc vuông nên góc còn lại cũng vuông \(\Rightarrow\) tứ giác AEHD là hình chữ nhật.

b)Ta cần chứng minh NA = AM và A, M, N thẳng hàng

Do tứ giác AEHD là hình chữ nhật nên AD // EH \(\Rightarrow\)AD//NE (1)

Mặt khác DE là đường trung bình nên DE // NM \(\Rightarrow\)DE //NA(2)

Từ (1) và (2) suy ra tứ giác EDAN là hình bình hành \(\Rightarrow\) ED = AN (*)

Tương tự ED = AM (**) .Từ (*) và (**) suy ra AM = AN (***)

Dễ chứng minh \(\Delta\)MAD = \(\Delta\)HAD \(\Rightarrow\)^MAD = ^HAD (4)

Tương tự: ^NAE = ^HAE (5) . Cộng theo vế (4) và (5) suy ra ^MAD + ^NAE = 90o (6)

Từ (6) suy ra  ^MAD + ^NAE + ^EAD = 90o + ^EAD = 180o \(\Rightarrow\)N, A, E thẳng hàng (****)

Từ (***) và (****) suy ra đpcm.

c)\(\Delta\)ABC vuông tại A có AI là trung tuyến nên \(AI=\frac{1}{2}BC=CI\)\(\Rightarrow\)\(\Delta\)ACI cân tại I

\(\Rightarrow\)^IAC = ^ICA (7)

Mặt khác ta dễ dàng chứng minh \(\Delta\)CNA = \(\Delta\)CHA (tự chứng minh đi nhé!)

Suy ra ^NCA = ^HCA \(\Rightarrow\)^NCA = ^ICA (8) (vì H, I cùng thuộc B nên ta có H, I, C thẳng hàng do đó ^HCA = ^ICA)

Từ (7) và (8) ta có ^IAC = ^NCA. Mà hai góc này ở vị trí so le trong nên ta có đpcm.

P/s: Không chắc nha!

11 tháng 12 2023

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

Hình bình hành ABDC có \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

b: Xét ΔMHA vuông tại H và ΔMKD vuông tại K có

MA=MD

\(\widehat{HMA}=\widehat{KMD}\)(hai góc đối đỉnh)

Do đó: ΔMHA=ΔMKD

=>MH=MK

=>M là trung điểm của HK

Xét tứ giác AHDK có

M là trung điểm chung của AD và HK

=>AHDK là hình bình hành

4 tháng 1 2022

CHỊU TỰ TÍNH NHA HỎI NGƯỜI NHÀ HOẶC TRA  GOOGLE

4 tháng 1 2022

tui cũng chịu

4 tháng 1 2022

ôi mình chịu thôi :((