Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác BEMF có
\(\widehat{FBE}=90^0\)
\(\widehat{BFM}=90^0\)
\(\widehat{BEM}=90^0\)
Do đó: BEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
ABCDMNIKH
a) Vì tứ giác ANDM có:
^A=90 độ ( t/g ABC vuông tại A)
^AMD=90 độ (M là hình chiếu của D trên AB)
^AND=90 độ (N là hình chiếu của D trên AC)
=> ANDM là hình chữ nhật ( vì có 3 góc _|_)
b) Vì:KD=DN (K đối xứng với N)
ID=DM (I đối xứng với M)
=> KN_|_MI;IM_|_KN
Do đó: MNKI là hình thoi (hai đường chéo _|_ vs nhau)
c) MHN mình vẽ sai bạn vẽ lại nhé
Ta có ^A=90 độ ( t/g ABC vuông)=>^NHA=\(\frac{\widehat{A}}{2}=\frac{90^o}{2}=45^o\left(1\right)\)
Mặt khác: AH đường cao=> ^H=90 độ=>^MHA=\(\frac{\widehat{H}}{2}=\frac{90^o}{2}=45^o\left(2\right)\)
Cộng (1) với (2)
=> ^NHA+^MHA=^MHN
=>45 độ + 45 độ =^MHN
=>^MHN=90 độ
Vậy ^MHN=90 độ
Ta có :
Tam giác ABC cân tại A
=> BAH=CAH
Ta lại có:
AI=AK
Gọi giao điểm của AH và IK là M
Xét ΔAIMΔAIM và ΔAKMΔAKM có:
AT=AK ( gt )
BAH=CAH(cmt)
AM chung
=> ΔAIMΔAIM= ΔAKMΔAKM (c.g.c)
=> IM=KM
=> I là đối xứng của K qua AH
(đ.p.c.m)
:))
Ta có :
Tam giác ABC cân tại A
=> BAH=CAH
Ta lại có:
AI=AK
Gọi giao điểm của AH và IK là M
Xét ΔAIMΔAIM và ΔAKMΔAKM có:
AT=AK ( gt )
BAH=CAH(cmt)
AM chung
=> ΔAIMΔAIM= ΔAKMΔAKM (c.g.c)
=> IM=KM
=> I là đối xứng của K qua AH
(đ.p.c.m)