Cho (O) và đường thẳng d nằm bên ngoài đường tròn. Từ (O) kẻ OH vuông góc với d, qua H...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

CÂU 1 :tìm giá trị m để đồ thị 3 hàm số : y=(m-1)x+3;y=x-1 và y=2x+3 cắt nhau tại 1 điểm CÂU 2: cho tam giác ABC cân tại A .Vẽ đường tâm D đường kính BC cắt AB,AC lần lượt ở E và F. Các dây BF và CE cắt nhau tại H a)Cho BC=10cm; AB=13cm.tính AD b)chứng minh A,E,H,F thuộc 1 đường tròn .xác định tâm O của đường tròn đó c)chứng minh DE là tiếp tuyến của đường tròn tâm O CÂU 3: cho đường tròn...
Đọc tiếp

CÂU 1 :tìm giá trị m để đồ thị 3 hàm số : y=(m-1)x+3;y=x-1 và y=2x+3 cắt nhau tại 1 điểm CÂU 2: cho tam giác ABC cân tại A .Vẽ đường tâm D đường kính BC cắt AB,AC lần lượt ở E và F. Các dây BF và CE cắt nhau tại H a)Cho BC=10cm; AB=13cm.tính AD b)chứng minh A,E,H,F thuộc 1 đường tròn .xác định tâm O của đường tròn đó c)chứng minh DE là tiếp tuyến của đường tròn tâm O CÂU 3: cho đường tròn (O;R), đường kính AB,dây cung BC=R. a)tính các cạnh và các góc chưa biết của tam giác ABC theo R b)đường thẳng qua O vuông góc vs AC cắt tiếp tuyến tại A của đường tròn (O) ở D.chứng minh OD là đường trung trực của đoạn AC.Tam giác ADC là tam giác gì?Vì sao? c)chứng minh DC là tiếp tuyến của đường tròn (O) CÂU 4:cho 2 đường tròn (O) và (O') tiếp xúc ngoài tại A. kẻ tiếp tuyến chung ngoài BC, B thuộc (O),C thuộc (O').Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC ở I a)CMR: GÓC BAC=90 độ b) tính số đo góc OIO' c)tính độ dài BC,biết OA=5cm;O'A=4cm

0
12 tháng 6 2018

A B C O M D E H K I P

a) Xét tứ giác ABOC: ^ABO=^ACO=900 (Do AB và AC là 2 tiếp tuyến của (O))

=> Tứ giác ABOC nội tiếp đường tròn dường kính AO (1)

Ta có: DE là dây cung của (O), I là trung điểm DE => OI vuông góc DE => ^OIA=900

Xét tứ giác ABOI: ^ABO=^OIA=900 => Tứ giác ABOI nội tiếp đường tròn đường kính AO (2)

(1) + (2) => Ngũ giác ABOIC nội tiếp đường tròn

Hay 4 điểm B;O;I;C cùng thuộc 1 đường tròn (đpcm).

b) Gọi P là chân đường vuông góc từ D kẻ đến OB

Ta có: Tứ giác BOIC nội tiếp đường tròn => ^ICB=^IOP (Góc ngoài tại đỉnh đối) (3)

Dễ thấy tứ giác DIPO nội tiếp đường tròn đường kính OD

=> ^IOP=^IDP (=^IDK) (4)

(3) + (4) => ^ICB=^IDK (đpcm).

c) ^ICB=^IDK (cmt) => ^ICH=^IDH => Tứ giác DHIC nội tiếp đường tròn

=> ^DIH=^DCH hay ^DIH=^DCB.

Lại có: ^DCB=^DEB (2 góc nội tiếp cùng chắn cung BD) => ^DIH=^DEB

Mà 2 góc trên đồng vị => IH // EB hay IH // EK

Xét tam giác KDE: I là trung điểm DE (Dễ c/m); IH // EK; H thuộc DK

=> H là trung điểm DK (đpcm).

2 tháng 12 2021

M A C D B O K N E F H I

a/ 

Ta có A và B cùng nhìn MO dưới 1 góc vuông => B và B thuộc đường tròn đường kính MO => A, B, M, O cùng nằm trên 1 đường tròn

b/

Ta có

\(C_{MCD}=MC+MD+CD=\left(MC+NC\right)+\left(MD+ND\right).\) 

Ta có

MA = MB (hai tiếp tuyến cùng xp từ 1 điểm)

NC=AC; ND = BD (hai tiếp tuyến cùng xp từ 1 điểm)

\(\Rightarrow C_{MCD}=\left(MC+AC\right)+\left(MD+BD\right)=MA+MB=2MA\)

M cố định; A cố định => MA không đổi \(\Rightarrow C_{MCD}=2MA\) không đổi => \(C_{MCD}\) không phụ thuộc vị trí điểm N

c/

Xét tg vuông NOC và tg vuông AOC có

OC chung

NC = AC (cmt)

\(\Rightarrow\Delta NOC=\Delta AOC\) (hai tg vuông có cạnh huyền và cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{OCA}=\widehat{OCD}\) (1)

Gọi P là giao OC với (O) và Q là giao của OD với (O)

Ta có

sđ cung AP = sđ cung NP; sđ cung BQ = sđ cung NQ (hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm đường tròn chia đôi cung giới hạn bởi hai tiếp điểm)

=> sđ cung NP = 1/2 sđ cung AN; sđ cung NQ = 1/2 sđ cung BN

=> sđ cung NP + sđ cung NQ = sđ cung PQ = 1/2 sđ cung AN + 1/2 sđ cung BN = 1/2 sđ cung AB

\(\Rightarrow\widehat{COD}=sđ\) cung PQ = 1/2 sđ cung AB (góc ở tâm)

Ta có \(\widehat{CAB}=\)1/2 sđ cung AB (góc giữa tiếp tuyến và dây cung)

\(\Rightarrow\widehat{CAB}=\widehat{COD}\) (2)

Xét tg CKA và tg ODC có

\(\widehat{OCA}=\widehat{OCD;}\widehat{CAB}=\widehat{COD}\) => tg CKA đồng dạng với tg ODC (g.g.g)

d/

Gọi I là giao của EF với MA

Xét tg OAB và tg OEF có

OA = OE; OB = OF (đều là bán kính (O))

\(\widehat{AOB}=\widehat{EOF}\) (góc đối đỉnh)

\(\Rightarrow\Delta OAB=\Delta OEF\left(c.g.c\right)\Rightarrow\widehat{BAO}=\widehat{IEO}\) => AB // EF (hai đường thẳng bị cắt bởi 1 đường thẳng tạo thành 2 góc so le trong = nhau thì // với nhau)

Ta có \(MO\perp AB\) (Hai tiếp tuyến cùng xp từ 1 điểm thì đường nối điểm đó với tâm đường tròn vuông góc với dây cung nối 2 tiếp điểm)

\(\Rightarrow MO\perp EF\) (đường thẳng vuông góc với 1 trong 2 đường thẳng // với nhau thì cũng vuông góc với đường thẳng còn lại)

Xét \(\Delta MIE\) có

\(EA\perp MI;MO\perp EF\) => O là trực tâm của tg MIE => OH là đường cao thuộc cạnh ME => OH phải đi qua I => EF; MA; OH đồng quy tại I