Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tham khảo câu 1 tại link dưới:
Câu hỏi của Thư Anh Nguyễn - Toán lớp 8 - Học toán với OnlineMath
A B C D O
Xét tam giác ABC và BAD có :
AB : chung
\(\widehat{BAD}=\widehat{ABC}\)
AD = BC
( ABCD là hình thang cân )
\(\Rightarrow\Delta ABC=\Delta BAD\)
\(\Rightarrow\widehat{BAC}=\widehat{ABD}\)
\(\Delta AOB\)CÓ : \(\widehat{OAB}=\widehat{OBA}\Rightarrow\Delta AOB\)cân tại O nên OA = OB
a)
Vì AEAE là phân giác góc ngoài của ˆAA^ nên ˆA1=ˆA2A1^=A2^
DEDE là phân giác góc ngoài của ˆDD^ nên ˆD1=ˆD2D1^=D2^
Mà ˆA1+ˆA2+ˆD1+ˆD2=180oA1^+A2^+D1^+D2^=180o (hai góc ở vị trí trong cùng phía)
⇒2ˆA2+2ˆD2=180o⇒2A2^+2D2^=180o
⇒ˆA2+ˆD2=90o⇒A2^+D2^=90o
⇒ΔAED:ˆAED=90o⇒ΔAED:AED^=90o (tính chất tổng 3 góc trong 1 tam giác)
⇒DE⊥AE⇒DE⊥AE
Gọi AE∩DC≡MAE∩DC≡M
ΔADMΔADM có DEDE vừa là đường cao vừa là đường phân giác nên ΔADMΔADM cân đỉnh D
nên DE cũng là đường trung tuyến
⇒E⇒E là trung điểm của AM
Gọi BF∩DC≡NBF∩DC≡N
Chứng minh tương tự có FF là trung điểm của BN
⇒EF⇒EF là đường trung bình của hình thang ABNMABNM
⇒EF//AB//CD⇒EF//AB//CD
b)
EF=AB+MN2EF=AB+MN2 (tính chất đường trung bình của hình thang)
⇒EF=AB+MD+CD+CN2⇒EF=AB+MD+CD+CN2 (1)
Mà MD = AD, CN = BC. Thay vào (1)
⇒EF=AB+AD+CD+BF2⇒EF=AB+AD+CD+BF2 (đpcm)
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Trần Nhật Duy - Toán lớp 8 - Học toán với OnlineMath